

Journal of Organometallic Chemistry 525 (1996) 89-107

$\begin{array}{c} Chemie \ polyfunktioneller \ Moleküle \\ CXXII. \ ^{1} \ Das \ komplexchemische \ Verhalten \ von \\ Bis(diphenylphosphino) \ amin \ gegenüber \ Dieisennonacarbonyl \ und \\ Reaktionen \ von \ \left[Fe_{2}(CO)_{6}(\mu-CO)(\mu-Ph_{2}P-NH-PPh_{2})\right] \cdot \ THF \end{array}$

Jochen Ellermann^{a,*}, Peter Gabold^a, Falk A. Knoch^a, Matthias Moll^a, Diana Pohl^a, Jörg Sutter^a, Walter Bauer^b

^a Institut f
ür Anorganische Chemie der Universit
ät Erlangen-N
ürnberg, Egerlandstr. 1, D-91058 Erlangen, Deutschland
 ^b Institut f
ür Organische Chemie der Universit
ät Erlangen-N
ürnberg, Henkestr. 42, D-91054 Erlangen, Deutschland

Eingegangen 26 Februar 1996; hergesehen 26 April 1996

Abstract

Treatment of $[Fe_2(CO)_9]$ with bis(diphenylphosphino)amine, $Ph_2P-NH-PPh_2$, dppa (1) in THF yields $[(OC)_4Fe(\mu-dppa)Fe(CO)_4](5)$ and $[Fe_2(CO)_6(\mu-CO)(\mu-dppa)] \cdot THF (6 \cdot THF)$. Further reaction of $6 \cdot THF$ with dppa gives $[Fe_2(CO)_4(\mu-CO)(\mu-dppa)_2] \cdot 2$ THF (9 · 2 THF) by CO-substitution, whereas $P(n-Bu)Ph_2$, PPh₃ and PMe₃ add themselves to $6 \cdot THF$ by forming the linear complexes $[(OC)_4Fe(\mu-dppa)Fe(CO)_3P(n-Bu)Ph_2]$ (7a), $[(OC)_4Fe(\mu-dppa)Fe(CO)_3PPh_3]$ (7b) and $[(OC)_4Fe(\mu-dppa)Fe(CO)_3PMe_3]$ (7c). The reaction of $6 \cdot THF$ with HPPh₂ or CIPPh₂ results in carbonyl loss and oxidative addition of the phosphorus-hydride, respectively the phosphorus-chloride, to the diiron centre yielding the iron(1) compounds $[Fe_2(H)(\mu-PPh_2)(CO)_5(\mu-dppa)] \cdot THF$ (15 · THF) or $[Fe_2(\mu-CI)(\mu-PPh_2)(CO)_4(\mu-dppa)] \cdot THF$ (16 · THF). Electrophilic attack of NOBF₄ leads to cleavage of the diiron complex $6 \cdot THF$ into $[Fe(CO)_2(NO)dppa]BF_4$ (17) and $[Fe(CO)_5]$ without oxidation of the iron centres. In the solid state, compound 17 forms linear as well as symmetrical bifurcated H-bonds to the BF₄⁻ anions. Furthermore, the NH group of $6 \cdot THF$ can be deprotonated by n-BuLi. Treatment of 6 in its lithiated form with CIPPh₂ yields $[Fe_2(\mu-PPh_2)(\mu-Ph_2P-N-PPh_2)(CO)_9]$ (10) by simultaneous CO loss. The structures of 5, $6 \cdot THF$, 7b, $9 \cdot 2$ THF, 10, 15 · CHCl₃ and 17 were determined by X-ray crystallography. As the X-ray crystallographic studies show, the PNP backbone of the coordinated ligand 1 is conformatively highly flexible. All the compounds were also characterized by ¹H NMR, ¹³C(¹H) NMR, ¹¹P(¹H) NMR, mass, and IR spectroscopy.

Zusammenfassung

Die Umsetzung von $[Fe_2(CO)_9]$ mit Bis(diphenylphosphino)amin, Ph₂P-NH-PPh₂, dppa (1) in THF führt zum Komplex $[(OC)_4Fe(\mu-dppa)Fe(CO)_4]$ (5) und seinem Folgeprodukt $[Fe_2(CO)_6(\mu-CO)(\mu-dppa)] \cdot THF$ (6 · THF). Die Reaktion von 6 · THF mit einem weiteren Äquivalent dppa verläuft unter CO-Substitution und Bildung von $[Fe_2(CO)_4(\mu-CO)(\mu-dppa)_2] \cdot 2$ THF (9 · 2 THF), während sich P(n-Bu)Ph₂, PPh₃ und PMe₃ durch nukleophilen Angriff an 6 · THF zu den offenkettigen Komplexen $[(OC)_4Fe(\mu-dppa)Fe(CO)_3P(n-Bu)Ph_2]$ (7a), $[(OC)_4Fe(\mu-dppa)Fe(CO)_3PPh_3]$ (7b) und $[(OC)_4Fe(\mu-dppa)Fe(CO)_3PMe_3]$ (7c) addieren. Die Eisen(I)-Verbindungen $[Fe_2(H)(\mu-PPh_2)(CO)_5(\mu-dppa)] \cdot$ THF (15 · THF) und $[Fe_2(\mu-Cl)(\mu-PPh_2)(CO)_4(\mu-dppa)] \cdot$ THF (16 · THF) sind durch oxidative Addition von HPPh₂ oder ClPPh₂ an 6 · THF bei gleichzeitiger CO-Eliminierung zugänglich. Elektrophiler Angriff von NOBF₄ führt zur Spaltung der zweikernigen Komplexverbindung 6 · THF in $[Fe(CO)_2(NO)dppa]BF_4$ (17) und $[Fe(CO)_5]$, ohne daß dabei die Oxidationsstufe der Eisenatome verändert wird. Die Verbindung 17 bildet im Festzustand sowohl lineare, als auch symmetrische gabelförmige Wasserstoffbrückenbindungen zu den BF₄ -Anionen aus. Außerdem läßt sich die NH-Gruppe des Komplexes 6 · THF durch n-BuLi deprotonieren. Anschließende Umsetzung des lithiierten 6 mit ClPPh₂ führt unter CO-Eliminierung zu $[Fe_2(\mu-PPh_2)(\mu-Ph_2P-N-PPh_2)(CO)_6]$ (10). Die Strukturen der Verbindungen 5, 6 · THF, 7b, 9 · 2 THF, 10, 15 · CHCl₃ und 17 wurden durch

Corresponding author.

¹ CXXI Mitteilung siehe Ref. [1].

Röntgenstrukturanalyse bestimmt. Sie belegen, daß das PNP-Gerüst des komplexgebundenen dppa eine außerordentlich große konformative Flexibilität besitzt. Alle Verbindungen wurden außerdem durch ¹H-NMR-, ¹³C{¹H}-NMR-, ³¹P{¹H}-NMR-, Massen- und IR-Spektroskopie charakterisiert.

Keywords: Iron; Diphosphazane; Organophosphine; Bifurcated H-bonds

1. Einleitung

Tertiäre Organophosphinliganden spielen in der metallorganischen Komplexchemie eine bedeutende Rolle. Einerseits sind sie leicht zu synthetisieren, andererseits können sterische und elektronische Eigenschaften in systematischer Weise durch Variation der Substituenten am Phosphoratom verändert werden [2,3]. Der Ligand Bis(diphenylphosphino)amin $(Ph_2P-NH-PPh_2, Ph =$ C_6H_5 , dppa, 1) [4-7] eröffnet wegen der direkten Verknüpfung aller Donoratome eine besonders variantenreiche Koordinationschemie [8-15]. Sein komplexchemisches Verhalten gegenüber zweikernigen Metallcarbonylen wurde bislang nur am Dicobaltoctacarbonyl (2) untersucht [8-10,16-18]. Im Rahmen dieser Arbeit berichten wir nun über Umsetzungen von 1 mit Dieisennonacarbonyl (3) und über Derivate der Verbindung $[Fe_2(CO)_6(\mu-CO)(\mu-dppa)] \cdot THF$ (6 · THF).

2. Ergebnisse und Diskussion

2.1. $[(OC)_4 Fe(\mu \cdot dppa)Fe(CO)_4]$ (5) und $[Fe_2(CO)_6(\mu \cdot CO)(\mu \cdot dppa)]$ · THF (6 · THF)

Beim Lösen von $[Fe_2(CO)_9]$ (3) in THF entsteht die reaktive Spezies $[Fe(CO)_4THF]$ (4) [19], welche unter Verdrängung des labil gebundenen THF mit dppa (1) reagiert. Die Reaktion kann dabei durch Bestrahlung mit UV-Licht beschleunigt werden. Setzt man 1 mit 3 im Molverhältnis von 1:2 in THF um, so entstehen gelbes $[(OC)_4Fe(\mu-dppa)Fe(CO)_4]$ (5) und rotes $[Fe_2(CO)_6(\mu-CO)(\mu-dppa)] \cdot THF$ (6 · THF).

Wie durch Vergleich der Moleküldarstellungen von 5 (Abb. 1) und 6 · THF (Abb. 2) ersichtlich ist, besitzt der Ligand dppa eine erstaunlich hohe konformative Flexibilität. Außergewöhnlich erscheint vor allem seine Konformation in 5, denn die Koordination der beiden voluminösen Fe(CO)₄-Gruppen bewirkt eine starke Aufweitung des PNP-Winkels um 20.4° (139.3° in 5 an Stelle von 118.9° in 1 [20]). Sieht man von der später zu diskutierenden Verbindung $[(OC)_{4}Fe(\mu \cdot dppa)Fe$ - $(CO)_1PPh_1$ (7b) ab, ist eine derartige Winkelaufweitung noch an keiner weiteren Komplexverbindung des dppa in dieser Größenordnung beobachtet worden. Neben der PNP-Winkelaufweitung ist die starke, ebenfalls ungewöhnliche Verdrillung der PPh₂-Einheiten bemerkenswert und an freien Bis(phosphino)aminen bislang noch unbekannt [21]

Die NH-Gruppe in 5 wird von den $Fe(CO)_4$ -Koordinationspolyedern fast vollständig abgeschirmt, so daß der NH-Wasserstoff keinerlei Tendenz zur Ausbildung von Brückenbindungen intermolekularer Art zeigt. Andererseits sind auch intramolekulare Wechselwirkungen mit den Sauerstoffatomen der Carbonylgruppen nicht feststellbar, denn sowohl die IR-Schwingungsbande ($v_{NH} = 3343 \text{ cm}^{-1}$) als auch das im ¹H-NMR auftre-tende Signal der NH-Gruppe ($\delta_{NH} = 4.45 \text{ ppm}$) besitzen eine scharfe Kontur.

Im Festkörper-IR-Spektrum von 5 findet man erwartungsgemäß 8 ν (CO)-Valenzschwingungsbanden (s. Exp. Teil). Im Lösungs-IR-Spektrum (THF) beobachtet man jedoch nur noch drei ν (CO)-Absorptionen [2049 cm⁻¹ (m-st, A₁), 1977 cm⁻¹ (m, A₁), 1937 cm⁻¹ (sst, E)], wie man sie für ein isoliertes, trigonal-bipyramidales PFe(CO)₄-Koordinationspolyeder der Punktgruppe C_{3v} mit axialer P-Koordination [22] erwarten sollte. Die IR-Valenzschwingungen der PN-Einfachbindungen, die mit der γ (HNP₂)-Schwingung koppeln [23], liegen im Erwartungsbereich zwischen 920 und 780 cm⁻¹.

Das ${}^{13}C{}^{1}H$ -NMR-Spektrum des in CD₂Cl₂ gelösten 5 zeigt für die CO-Liganden ein Pseudoquintett, das

Abb. 1. Moleküldarstellung von **5** (ohne Phenyl-H-Atome). Ausgewählte Abstände [pm] und Bindungswinkel [°]: Fe(1)–C(1) 177.1(10), Fe(1)–C(3) 177.0(10), Fe(1)–P(1) 222.8(3), C(1)–O(1) 115.3(12), P(1)–N(1) 170.6(6), P(2)–N(1) 171.0(7), P(1)–C(10) 181.0(8), P(1)–C(20) 183.3(9), C(3)–O(3) 116.0(12); C(3)–Fe(1)– P(1) 88.7(3), C(1)–Fe(1)–P(1) 171.4(3), Fe(1)–P(1)–C(10) 116.9(3), Fe(1)–P(1)–N(1) 108.8(2), Fe(2)–P(2)–N(1) 108.8(2), P(1)–N(1)– P(2) 139.3(4), N(1)–P(1)–C(10) 108.0(4), O(1)–C(1)–Fe(1) 175.8(9).

Abb. 2. Moleküldarstellung von $6 \cdot$ THF (ohne Phenyl-H-Atome). Ausgewählte Abstände [pm] und Bindungswinkel [°]: Fe(1)–Fe(2) 266.8(1), Fe(1)–P(1) 224.4(1), Fe(1)–C(1) 182.5(5), Fe(1)–C(4) 197.9(4), P(1)–N(1) 169.0(3), P(2)–N(1) 167.6(3), P(1)–C(10) 184.4(4), C(1)–O(1) 114.0(6), C(4)–O(4) 118.5(5), O(50)–C(51) 138.5(9); P(1)–N(1)–P(2) 123.2(2), Fe(1)–C(4)–Fe(2) 85.6(2), Fe(2)–Fe(1)–C(1) 95.6(1), Fe(2)–Fe(1)–C(2) 150.6(2), Fe(2)–Fe(1)–C(3) 90.9(2), Fe(2)–Fe(1)–P(1) 93.7(1), Fe(1)–P(1)–C(10) 119.1(1), Fe(1)–P(1)–N(1) 113.9(1), C(51)–O(50)–C(54) 104.0(5).

einem ABX-System angehört. Der Kohlenstoff (X) koppelt mit zwei, im ¹³C-Isotopomer chemisch nicht äquivalenten ³¹P-Kernen (A und B), wobei das Erscheinungsbild des Kopplungsmusters im X-Teil aus dem Phänomen der virtuellen Kopplung resultiert [8,24,25]. Wie für dppa verbrückte Metallkomplexe bereits verschiedentlich gefunden wurde [8,26], werden auch für die ipso-, ortho- und meta-Kohlenstoffatome der PPh₂-Einheiten Pseudoquintetts bzw. virtuelle Tripletts [27] beobachtet. Lediglich für die para-13C-Kohlenstoffatome wird ein Singulett bei $\delta = 131.6$ ppm registriert. Das Auftreten nur eines Pseudoquintetts für die ¹³C-Carbonylkohlenstoffe belegt, daß diese in den einzelnen PFe(CO)₄-Koordinationspolyedern fluktuieren. Die Kopplungskonstanten der Pseudoquintettsignale [24] wurden durch Simulation bestimmmt und sind, wie die Signallagen der ¹³C-Carbonyl- und ¹³C Phenylkohlenstoffresonanzen im Exp. Teil angeführt.

Mit 5 gelang erstmals die röntgenographische Strukturaufklärung eines Bis(tetracarbonyleisen)komplexes des Typs $[(OC)_4Fe(\mu-R_2P-X-PR_2)Fe(CO)_4]$. Verbindungen dieser Art wurden bisher in der Literatur nur selten erwähnt (X = CH₂, R = Ph [28]; X = NCH₃, R = PF₂ [29,30]; X = O, R = OC₂H₅ [30,31]). Die Mehrzahl dieser Komplexe erwies sich als derart instabil, daß es nicht möglich war, sie in reiner Form zu isolieren [29-32]. Auch 5 ist, zumindest in Lösung (THF) leicht zersetzlich und geht, vor allem bei direkter Lichteinwirkung, unter Eliminierung von Kohlenmonoxid in den CO-verbrückten Komplex $6 \cdot$ THF (Abb. 2) über.

Der PNP-Winkel des Liganden (123.2°) weicht in dieser Verbindung nur um 4.3° von dem des freien 1 ab. Dementsprechend sind beide Konformationen nahezu identisch und die PNP-Einheit in 6 praktisch spannungsfrei. Die NH-Gruppe ist sterisch entschirmt und kann problemlos mit dem Solvat-THF eine Wasserstoffbrückenbindung eingehen. Das FePNPFe-Fünfringgerüst in 6 ist nahezu planar. Der mittlere Abstand Fe-CO (terminal) 179.2 pm ist aufgrund des gestiegenen π-Akzeptorverhaltens der Carbonylgruppen kürzer als in 3 (183.5 pm [33]; 183.8 pm [34]), während der Abstand der beiden Eisenatome durch den Verlust zweier verbrückender CO-Gruppen deutlich zunimmt (266.8 pm in 6; 252.3 pm in 3 [33]). Die Vergrößerung des Fe-Fe-Abstands führt gleichzeitig zu einer Aufweitung des Fe-C-Fe-Winkels am Brücken-C-Atom (77.6° in 3 [33] gegenüber 85.6° in 6). Die terminalen CO-Gruppen liegen in ekliptischer Konformation vor.

Das Festkörper-IR-Spektrum von $6 \cdot \text{THF}$ zeigt eine breite Grundabsorption von $3100-2800 \text{ cm}^{-1}$, welche charakteristisch für eine NH ··· OC₄H₈-Wasserstoffbrückenbindung ist. Auf dieser kommen zusätzlich die ν (CH)aromat.- und ν (CH₂)-Banden zu liegen. Die Anwesenheit von THF wird außerdem anhand der charakteristischen ν (COC) Bande bei 1050 cm⁻¹ erkannt.

Das ¹³C{¹H}-NMR-Spektrum von $6 \cdot$ THF zeigt für die endständigen CO-Gruppen nur ein Singulett bei $\delta = 222.5$ ppm. Das Auftreten nur eines Signals belegt, daß es sich, wie bei 5, um ein fluktuierendes Molekül handelt. Allerdings dürfte der Austausch der einzelnen Typen von CO-Gruppen nur langsam vor sich gehen, denn das Brücken-CO-Signal bei $\delta = 213.8$ ppm besitzt eindeutig Triplettcharakter. Von den ¹³C-Signalen der Phenylringe besitzt lediglich das der *ipso*-Kohlenstoffatome Pseudotriplettstruktur und weist auf das Vorliegen eines ABX-Systems hin, während die ¹³C-Resonanzen der *ortho-, meta-* und *para*-Kohlenstoffatome Singuletts bilden.

Ähnlich wie die metallverbrückte Verbindung $[Fe_2(CO)_6(\mu-CO)(\mu-dppm)]$ (8) $[dppm = Ph_2 - PCH_2PPh_2]$ [33], deren Komplexchemie in den letzten Jahren von mehreren Arbeitsgruppen eingehend untersucht wurde [35-43], erweist sich auch $[Fe_2(CO)_6(\mu-CO)(\mu-dppa)] \cdot THF$ (6 · THF) als reaktives Edukt für weitere Derivatisierungen. Potentielle Reaktionspartner können 6 · THF an verschiedenen reaktiven Zentren angreifen (s. Schema 1).

2.2. $[Fe_2(CO)_4(\mu - CO)(\mu - dppa)_2] \cdot 2$ THF (9 · 2 THF)

Setzt man $6 \cdot$ THF mit 1 im Molverhältnis von 1:1 in THF um (Schema 1/1), erhält man durch Substitution

Schema I. (1) + dppa, = 2 CO, THF; (11) + n-BuLi, + ClPPh₂, = LiCl, = CO, - n-BuH, THF; (11) + PR₁R₂R₃, THF; (1V) + HPPh₂, = 2 CO, THF; (V) + ClPPh₂, = 3 CO, THF; (VI) + NOBF₄, = Fe(CO)₅, = THF, CH₂Cl₂.

zweier CO-Gruppen das tiefrote $[Fe_2(CO)_4(\mu-CO)(\mu-dppa)_2] \cdot 2$ THF (9 · 2 THF), dessen dppa-Liganden ebenfalls THF über Wasserstoffbrückenbindungen fixieren (Abb. 3).

Der mittlere PNP-Winkel entspricht mit 117.6° nahezu dem des nicht koordinierten 1 [20], die $Fe_2(CO)_5$ -Einheit ist planar. Während der FePNPFe-Fünfring in $6 \cdot THF$ fast planar ist, besitzen die entsprechenden Fünfringe in $9 \cdot 2$ THF Envelope-Konformationen.

Im Festkörper-IR-Spektrum von $9 \cdot 2$ THF findet man neben den ν (CH₂)-Banden des Kristall-THF (2985– 2855 cm⁻¹) und den ν (CH)-Absorptionen der Phenylringe (3080–3010 cm⁻¹) die (NH)-Valenzschwingungsbande bei 3165 cm⁻¹, deren breite Kontur das Vorliegen von (NH · OC₄H₈)-Wasserstoffbrückenbindungen belegt. Wie bei **5** und **6** · THF wird auch bei $9 \cdot 2$ THF und den anderen Verbindungen auf die Wiedergabe der stets lagekonstanten P(C₆H₅)₂-Banden verzichtet und auf die Literatur [23,44] verwiesen. Die Carbonylliganden des in CDCl₃ gelösten $9 \cdot 2$ THF fluktuieren bei Raumtemperatur, denn für alle fünf CO-Gruppen wird im ¹³C-NMR-Spektrum nur ein Signal bei $\delta = 232.8$ ppm registriert. Wegen seiner großen Halbwertsbreite ist zu vermuten, daß die Koaleszenztemperatur in Nähe der Meßtemperatur (25 °C) liegt. Für die Signale der *ortho-*, *meta-* und *para-*Phenylkohlenstoffe werden bei $9 \cdot 2$ THF nur Singuletts beobachtet; für die *ipso-*Kohlenstoffatome jedoch ein kompliziertes, aus neun Linien bestehendes Aufspaltungsmuster (Pseudononett), welches den X-Teil eines ABCDX-Systems repräsentiert. Auch für dieses Signalmuster wurde eine ¹³C-NMR-Simulation durchgeführt (Kopplungskonstanten s. Exp. Teil).

2.3. $[Fe_{,}(\mu-PPh_{,})(\mu-Ph_{,}P-N-PPh_{,})(CO)_{6}]$ (10)

Setzt man $6 \cdot$ THF mit n-Butyllithium im Molverhältnis von 1:1 bei -78 °C in THF um, so

erfolgt zunächst Deprotonierung der NH-Gruppe. Das dabei entstehende Komplexanion reagiert entsprechend Schema 1/II in situ mit Chlordiphenylphosphin zur orangeroten, PPh₂-verbrückten Verbindung 10 weiter. Eine Ausbildung des Liganden N(PPh₂)₃ (11) [45], wie sie bei einkernigen $[Ph_2P-N-PPh_2]^-$ -substituierten Metallcarbonylen unter den gleichen Bedingungen auftritt [46,47], findet dabei nicht statt. Ursache dafür ist die ambidente Nukleophilie des entstehenden Komplexanions, dessen negative Ladung sowohl über die PNP-Bindung des Liganden als auch über die Metall-Metallbindung und die verbrückende CO-Gruppe delokalisiert ist. Wie Seyferth et al. berichteten, besitzen auch schwefelhaltige Komplexanionen mit $Fe_2(CO)_6(\mu$ -CO)-Grundgerüst ambident nukleophilen Charakter [48,49]. Eine analoge Zweistufenreaktion mit n-BuLi und ClPPh2 gibt auch der zweifach CO-verbrückte Komplex $[Co_2(CO)_4(\mu-CO)_2(\mu-dppa)] \cdot 1/2 C_6 H_6$ (12) $\cdot 1/2 C_6 H_6$ [8], nicht jedoch das CO-brückenfreie Manganderivat $[Mn_2(CO)_8(\mu-dppa)]$ (13) [50].

Wie Abb. 4 zeigt, umgibt das Bis(diphenylphosphino)amid die beiden Eisenatome von 10 metall-

Abb. 3. Moleküldarstellung von $9 \cdot 2$ THF (ohne Phenyl-H-Atome). Ausgewählte Abstände [pm] und Bindungswinkel [°]: Fe(1)–Fe(2) 268.0(3), Fe(1)–C(1) 174.0(6), Fe(1)–C(3) 194.8(5), Fe(1)–P(1) 218.5(2), Fe(1)–P(3) 219.3(3), P(1)–N(1) 168.5(5), P(3)–N(2) 169.9(4), P(2)–N(1) 169.5(4), P(4)–N(2) 168.9(4), P(1)–C(10) 183.3(5), C(3)–O(3) 118.4(6), C(1)–O(1) 116.2(7); Fe(2)–Fe(1)–P(1) 92.4(1), Fe(2)–Fe(1)–P(3) 92.7(1), Fe(1)–C(3)–Fe(2) 85.9(2), Fe(2)–Fe(1)–C(1) 163.7(2), Fe(2)–Fe(1)–C(2) 89.6(2), P(1)–N(1)–P(2) 118.0(3), P(3)–N(2)–P(4) 117.1(2), Fe(1)–P(1)–N(1) 113.4(2), Fe(1)–P(3)–N(2) 113.0(2), Fe(1)–P(1)–C(10) 117.5(2), Fe(1)–Fe(2)–C(3) 46.5(1).

Abb. 4. Moleküldarstellung von 10 (ohne Phenyl-H-Atome). Ausgewählte Abstände [pm] und Bindungswinkel [°]: Fe(1)-Fe(1A) 270.8(1), Fe(1)-P(1) 230.6(1), Fe(1)-P(2) 220.8(2), P(2)-Fe(1A) 220.8(2), P(1)-N(1) 160.2(2), P(1A)-N(1) 160.2(2), Fe(1)-C(1) 181.0(4), Fe(1)-C(3) 175.9(4), C(1)-O(1) 114.1(5), C(3)-O(3) 115.2(5), P(1)-C(10) 181.9(4); Fe(1)-P(2)-Fe(1A) 75.6(1), P(1)-Fe(1)-P(2) 144.2(1), P(1)-N(1)-P(1A) 128.2(3), C(1)-Fe(1)-C(2) 175.3(2), C(3)-Fe(1)-Fe(1A) 156.6(1), P(2)-Fe(1A) 52.2(1).

verbrückend, wodurch eine FePNPFe-Fünfringebene entsteht, in der auch das Phosphoratom der PPh₂-Brücke zu liegen kommt. Eine Abwinkelung der (PNP)-Einheiten wie in 6 · THF und 9 · 2 THF liegt bei 10 nicht vor. Die (P-N)-Bindungslängen betragen 160.2 pm und sind somit eindeutig kürzer als die Abstände für (P-N)-Einfachbindungen (169-171 pm), wie sie bei den Komplexen 5, 6 · THF und 9 · 2 THF gefunden wurden. Auf der anderen Seite ist der PNP-Winkel mit 128.2° deutlich größer als die bei 6 · THF und 9 · 2 THF gefundenen PNP-Winkel des dppa (118-123°). Beide Befunde deuten auf hohe Doppelbindungsanteile und Elektronendelokalisation im Amidoliganden hin. Der Fe-Fe-Bindungsabstand ist mit 270.8 pm relativ groß. Abstände dieser Größenordnung wurden jedoch gelegentlich auch an anderen PPh₂-verbrückten Eisen(I)-Komplexen mit Metall-Metallbindung gefunden [51-53]. Die Paare der trans-ständigen CO-Gruppen C(1)O(1)/C(2)O(2) und C(1a)O(1a)/C(2a)O(2a) liegen nicht koplanar, sondern gegeneinander verdrillt vor. Für die verbleibenden Carbonylliganden C(3)O(3) und C(3a)O(3a) befinden sich die energetisch günstigsten Lagen in den vom sperrigen Bis(diphenylphosphino)amid-Liganden abgewandten Positionen. Sie sind deshalb in Richtung der PPh₂-Gruppe orientiert.

Das Festkörper-IR-Spektrum von 10 zeigt eine intensive ν (P–N)-Bande bei 1142 cm⁻¹. Sie weist auf einen erheblichen (PN)-Doppelbindungsanteil hin, und ist typisch für das anionische Ligandensystem $[Ph_2P-N-PPh_2]^{-}$ [8,54].

Das ³¹ P{¹H}-NMR-Spektrum des in CD₂Cl₂ gelösten 10 zeigt zwei Signale bei $\delta = 235.8$ (t, μ -PPh₂) und 71.6 ppm (d, μ -Ph₂P-N-PPh₂). Auffallend ist die relativ kleine PP-Kopplungskonstante von 31 Hz, da an zweikernigen, PPh₂-verbrückten Fe(I)-Komplexen der Liganden dppa (1) und Ph₂P-CH₂-PPh₂, dppm (14), normalerweise bedeutend größere Werte gefunden werden (s. 2.5.).

Im all-¹²C-Isotopomer von 10 sind P(1) und P(1a) chemisch äquivalent. Das Phosphoratom P2 ist davon chemisch verschieden, dementsprechend ist das "C{H}-NMR-Spektrum erwartungsgemäß komplex. Ein Isotopomer mit einem ¹³C-Kern in der ipso-Position eines Aromaten der µ-PNP-Brücke bildet streng genommen ein ABMX-Spinsystem mit A,B,M = 31 P und $X = {}^{13}C$. Gleiches gilt für die ortho-, meta- und para-¹³C-Isotopomere [8]. Hingegen bilden die Isotopomere mit ¹³C in den an der PPh₂-Brücke gebundenen Aromaten jeweils ein AM₂X-Spinsystem mit magnetisch äquivalenten P-Atomen an der µ-PNP-Brücke [8]. Da das ¹³C{¹H}-NMR-Spektrum der sehr ähnlich strukturierten Verbindung $[Co_2(\mu-PPh_2)(\mu-Ph_2P-NH PPh_2$ (CO)₄(μ -CO)] bereits ausführlich diskutiert wurde [8], sei an dieser Stelle nur vermerkt, daß die Signalaufspaltungen beider Verbindungen im Phenylbereich im wesentlichen Übereinstimmung zeigen, auch wenn sich die chemischen Verschiebungen und die Größen der Kopplungskonstanten in gewissem Maße unterscheiden.

Lediglich das Paar der äußeren Resonanzen der *ipso*-Kohlenstoffsignale des Liganden Bis(diphenylphosphino)amid weist bei 10 keine Feinstruktur auf. Die Signale der ¹³C-Carbonylkohlenstoffatome von 10 erscheinen als zwei breite, wenig strukturierte Multipletts, die anzeigen, daß die CO-Gruppen fluktuieren.

2.4. $[(OC)_4 Fe(\mu - dppa)Fe(CO)_3 P(n-Bu)Ph_2]$ (7a), $[(OC)_4 Fe(\mu - dppa)Fe(CO)_3 PPh_3]$ (7b) und $[(OC)_4 Fe(\mu - dppa)Fe(CO)_3 PMe_3]$ (7c)

Neben der orangeroten Verbindung 10 entsteht bei der unter 2.3. beschriebenen Reaktion ein gelbes Nebenprodukt in 6-10 prozentiger Ausbeute. Dieses konnte als $[(OC)_4Fe(\mu$ -dppa)Fe $(CO)_3P(n-Bu)Ph_2]$ (7a) identifiziert werden. Die Bildung von 7a dürfte darauf zurückzuführen sein, daß die Lithiierung von 6 · THF nicht vollständig verläuft, da offensichtlich später zugesetztes Chlordiphenylphosphin mit noch vorhandenem n-Butyllithium gemäß Eq. (1) zu n-Butyl(diphenyl)phosphin reagiert, welches sich anschließend an $6 \cdot$ THF entsprechend Schema 1/III unter Ringöffnung addiert. CIPPh₂ + n-BuLi $\rightarrow P(n-Bu)Ph_2 + LiCl$ (1) Die direkte Reaktion von $6 \cdot$ THF mit

Chlordiphenylphosphin (s. 2.5. bzw. Schema 1/V) konnte in Gegenwart von n-BuLi nicht beobachtet werden. Auch PPh₃ und PMe₃ bilden mit 6 THF analoge, offenkettige Addukte. Eine Röntgenstrukturanalyse von 7b belegt, daß die Verbindung in wesentlichen Strukturmerkmalen (Abb. 5) mit der von 5 übereinstimmt,

Abb. 5. Moleküldarstellung von **7b** (ohne Phenyl-H-Atome). Ausgewählte Abstände [pm] und Bindungswinkel [°]: Fe(1)-C(1) 176.9(10), Fe(1)-C(3) 179.1(7), C(1)-O(1) 115.4(13), C(3)-O(3) 114.4(9), Fe(1)-P(1) 223.1(3), P(1)-N(1) 172.7(5), P(2)-N(1) 172.5(5), Fe(2)-P(2) 220.5(3), Fe(2)-P(3) 221.9(3), Fe(2)-C(5) 176.6(8), C(5)-O(5) 114.0(10), C(1)-Fe(1)-C(2) 90.8(4), C(1)-Fe(1)-P(1) 179.5(3), Fe(1)-P(1)-P(1) 106.8(2), P(1)-N(1)-P(2) 139.9(3), Fe(2)-P(2)-N(1) 107.0(2), P(2)-Fe(2)-P(3) 175.8(1), C(7)-Fe(2)-P(2) 91.4(2), C(7)-Fe(2)-P(3) 91.7(2).

Beide Eisenatome in **7b** befinden sich in trigonal-bipyramidaler Umgebung. Die Bindungslängen Fe(2)– P(2) = 220.5 pm und Fe(2)–P(3) = 221.9 pm unterscheiden sich nur unwesentlich. Dieser Befund weist auf annähernd gleiche Bindungsstärken hin. Der Winkel P(2)-Fe(2)-P(3) beträgt 175.8°; die mittleren Winkel P(2)-Fe(2)-C(5/6/7) und P(3)-Fe(2)-C(5/6/7) entsprechen genau dem Idealwert von 90.0°.

In den Festkörper-IR-Spektren von **7a-c** sind die ν (NH)-Banden zwischen 3340 und 3330 cm⁻¹ mit schwacher bis mittlerer Intensität zu finden. Ihre scharfen Konturen zeigen an, daß die NH-Gruppen, wie bei **5**, sterisch abgeschirmt sind, und keine Wasserstoffbrückenbindungen mit dem THF, dem Lösungsmittel in dem die Verbindungen dargestellt wurden, eingehen.

Die ³¹P{¹H}-NMR-Spektren von **7a-c** sind nach den Regeln 1. Ordnung interpretierbar (s. Exp. Teil). Bemerkenswert ist, daß die ${}^{2}J({}^{31}P{}^{31}P)$ -Kopplungskonstanten (61-63 Hz) für die beiden Phosphorkerne des eisenverbrückenden dppa gut mit dem für 5 durch Simulation ermittelten Wert von 60 Hz übereinstimmen.

Die ¹³C{¹H}-NMR-Spektren der in CDCl₃ gelösten **7a-c** zeigen für die CO-Gruppen der $[R_3P-Fe(CO)_3-$ P'-dppa]-Koordinationspolyeder erwartungsgemäß Dubletts von Dubletts bei etwa $\delta = 214$ ppm, jedoch überlagern diese zwei Dubletts bei 7a,b jeweils so, daß die Signalform eines Tripletts entsteht. Diese Pseudotriplettstruktur resultiert daraus, daß überraschenderweise die beiden ${}^{2}J({}^{31}P_{PR3}{}^{13}C)$ - und ${}^{2}J({}^{31}P_{dppa}{}^{13}C)$ -Kopplungskonstanten gleich groß sind (30 Hz). Lediglich bei 7c ist das Bild Dubletts von Dubletts klar erkennbar, da nur eine geringfügige Überlagerung existiert. Auch sind die beiden Kopplungskonstanten mit 32 und 29 Hz deutlich unterscheidbar. Für die CO-Gruppen der in 7a-c weiterhin vorhandenen [dppa-P-Fe(CO)₄]-Koordinationspolyeder werden erwartungsgemäß jeweils Dubletts bei etwa 213 ppm gefunden. Die ${}^{2}J({}^{31}P^{13}C)$ -Kopplungskonstanten betragen immer 19 Hz und stimmen wiederum sehr gut überein mit denjenigen, die beim ähnlich strukturierten 5 durch Simulation berechnet wurden (18 Hz).

Im ¹³C-Spektrum von **7a** finden sich im Bereich von 33.2–13.7 ppm die Signale des n-Butylrestes, welche mittels (¹³C,¹H)-korrelierten Spektren (H,C-COSY) und Dept-Messungen eindeutig zugeordnet werden können. Die Resonanzen der α - und γ -Kohlenstoffe sind aufgrund von Phosphorkopplungen zu Dubletts aufgespalten. Die Signale des β - und des ω -Kohlenstoffkerns erscheinen als scharfe Singuletts.

2.5. $[Fe_2(H)(\mu - PPh_2)(CO)_5(\mu - dppa)] \cdot THF (15 \cdot THF)$ und $[Fe_2(\mu - Cl)(\mu - PPh_2)(CO)_4(\mu - dppa)] \cdot THF (16 \cdot THF)$

Die Reaktion von $6 \cdot$ THF mit Diphenylphosphin oder Chlordiphenylphosphin verläuft in THF unter reduktiver Spaltung der PH- bzw. PCI-Bindung. Dabei entstehen gemäß Schema 1 (Reaktionsweg IV und V) die Dieisen(I)-Komplexe $15 \cdot$ THF und $16 \cdot$ THF. Da die Reaktionen unter Eliminierung von CO verlaufen, lassen sich Reaktionen und Ausbeuten durch UV-Bestrahlung der Reaktionslösungen erheblich steigern. Löst man das gelbe $15 \cdot$ THF in Chloroform, so wird das über die NH-Gruppe wasserstoffbrückengebundene THF durch CHCl₃ verdrängt. Überschichtet man die CHCl₃-Lösung mit n-Pentan, kristallisiert 15 sowohl solvatfrei in Form feiner in Durchsicht dunkelrot, in Aufsicht grünschwarz erscheinender Nadeln, als auch in orangeroten Prismen, welche ein Formeläquivalent CHCl₃ (fehlgeordnet) enthalten, aus. Letztere erwiesen sich als geeignet zur Durchführung einer Kristallstrukturanalyse.

Abb. 6 zeigt die Molekülstruktur von 15, wie sie in den Kristallen von $15 \cdot CHCl_3$ vorliegt. Das fehlgeordnete CHCl_3 liegt nahe der N(1)-H(1)-Gruppe, bildet aber mit dieser keine (NH ··· Cl)-Bindung aus. Die PN-Bindungsabstände sind mit 167.5 bzw. 171.2 pm typisch für den Neutralliganden dppa [8] und deutlich länger als in dppa⁻ (vgl. 160.2 pm in 10). Beide Eisenzentren sind sechsfach koordiniert und 268.7 pm voneinander entfernt. Der hydridisch gebundene

Abb. 6. Moleküldarstellung von $15 \cdot \text{CHCl}_3$ (ohne Phenyl-H-Atome). Ausgewählte Abstände [pm] und Bindungswinkel [°]: Fe(1)–Fe(2) 268.7(2), Fe(1)–C(1) 181.3(7), Fe(1)–C(2) 177.0(7), Fe(1)–C(3) 176.7(7), Fe(1)–P(1) 220.6(2), Fe(1)–P(3) 222.9(2), Fe(2)–H(2) 148.5, Fe(2)–C(4) 173.2(7), Fe(2)–C(5) 177.6(7), Fe(2)–P(2) 219.0(2), Fe(2)–P(3) 216.3(2), P(1)–N(1) 167.1(5), P(2)–N(1) 171.2(5); P(1)–N(1)–P(2) 125.0(3), Fe(2)–P(3)–Fe(1) 75.42(7), P(1)–Fe(1)–P(3) 145.93(7), N(1)–P(1)–Fe(1) 112.6(2), C(4)–Fe(2)–Fe(1) 155.8(2), C(4)–Fe(2)–C(5) 96.3(3), C(2)–Fe(1)–C(1) 168.7(3), C(2)–Fe(1) C(3) 97.1(3), C(3)–Fe(1)–P(1) 104.6(2), C(3)–Fe(1)–P(3) 109.3(2), P(3)–Fe(2)–Fe(1)–Fe(1) 53.40(5), P(1)–Fe(1)–Fe(2) 94.75(6).

Wasserstoff H(2) steht nahezu senkrecht auf der mittleren Ebene, gebildet aus Fe(1), Fe(2), P(1), P(2), P(3) sowie dem Stickstoffatom N(1). Der Abstand Fe(2)-H(2) beträgt 148.5 pm. Im Kristall existiert neben dem in Abb. 6 wiedergegebenen Enantiomeren (15a) ein weiteres Spiegelbildenantiomeres (15b) (Schema 2), d.h. 15 · CHCl₃ fällt bei der Synthese als Racemat an.

Auffallend ist, däß das solvatfreie 15 im Festzustand in einer tautomeren, CO- und hydridverbrückten Form 15c vorliegt, in der beide Eisenzentren die seltene Koordinationszahl sieben besitzen.

Die zu 15c isostrukturelle Verbindung mit den Liganden dppm an Stelle von dppa und $P(C_6H_{11})_2$ an Stelle von PPh₂ wurde vor kurzem von Hogarth et al. beschrieben [55].

Die symmetrische Struktur von 15c liegt nach den Ergebnissen der ¹H-, ¹³P{¹H}- und ¹³C{¹H}-NMR-Spektren auch in Lösungen des Racemats 15 · THF in CDCl₃ vor (Schema 2).

Zunächst folgt aus dem ¹H-NMR-Spektrum von 15 · THF, daß beim Lösen der Substanz in CDC1, das THF aus seinen NH-Wasserstoffbrückenbindungen vollständig freigesetzt wird, und man findet die typischen Resonanzen des unkoordinierten THF ($\delta = 3.73$ und 1.85 ppm). Es ist anzunehmen, daß **15a-c** an den NH-Gruppen aus Platzgründen von dem voluminösen CDC1₃ nicht solvatisiert wird, wie dies auch für das kristalline **15** · CHC1₃ röntgenographisch belegt wurde. Dementsprechend ist auch das Signal der NH-Protonen nicht mehr verbreitert und wird für das in Lösung nur vorhandene **15c** als scharfes, gut aufgelöstes Dublett von Tripletts bei $\delta = 4.17$ gefunden. Allerdings überlagern je zwei Triplettlinien auf Grund gleicher ${}^{2}J({}^{31}P^{1}H)$ - und ${}^{4}J({}^{31}P^{1}H)$ -Kopplungen (jeweils 10Hz) so, daß das Erscheinungsbild eines Quartetts resultiert. Ebenfalls ein Dublett von Tripletts liefert der verbrückende Hydridwasserstoff von 15c ($\delta =$ -9.36 ppm, $J(^{31}P^{1}H)$; 54 u. 27 Hz). Die große Dublettkopplung von 54Hz belegt, daß die Phosphido-Gruppe und die Wassersstoffbrücke zueinander trans-Positionen einnehmen, während die kleine Triplettkopplung anzeigt, daß der Diphosphazan-Ligand 1 in cis-Stellung zur (FeHFe)-Brücke steht. Dieser Befund wird weiterhin durch das ³¹P{¹H}-NMR-Spektrum des in CDCl₃ gelösten 15 · THF gestützt. Für die Phosphido-Brücke beobachtet man ein Triplett bei $\delta = 180.0$ und für das koordinierte dppa (1) ein Dublett bei $\delta = 110.7$ ppm im Intensitätsverhältnis von 1:2. Die geringe ${}^{2}J({}^{31}P{}^{31}P)$ -Kopplungskonstante von nur 55 Hz beweist die cis-Stellung [35,37,51] der beiden P-Liganden in 15c.

Im ¹³C(¹H)-NMR-Spektrum des in CDCl₃ gelösten 15 · THF findet man für die ¹³C-Carbonylliganden drei Resonanzsignale im Integrationsverhältnis von 1:2:2. Zwei dieser Signale sind stark verbreitert ($\delta = 234.0$; μ -CO und $\delta = 215.8$ ppm; 2 CO endst.). Das Signal der verbleibenden zwei endständigen CO-Gruppen ($\delta =$ 217.6 ppm) ist scharf und stellt den X-Teil eines ABCX-Spinsystems, das aus den Phosphorkernen von 1 (P_A und P_B), von der PPh₂-Brücke (P_C) und den Kohlenstoffen X des ¹³C-Isotopomeren gebildet wird. Da nur zwei der drei CO-Signale verbreitert erscheinen, kann gefolgert werden, daß nur drei der fünf CO-Gruppen (in Schema 2 mit ^{*} gekennzeichnet) an Platzwechselvorgängen beteiligt sind.

Aus den Festkörper-IR-Spektren von 15 · THF und 16 · THF folgt das Vorliegen von wasserstoffbrückengebundenem THF aus der jeweils sehr breiten (NH · · · O)-Valenzschwingungsbande bei 3140 cm⁻¹. Weiterhin lassen sich nach dem Aussondern der zahlreichen Absorptionen des dppa [8] und der PPh₂-Gruppen [56] die ν (CH₂)-. δ (CH₂)- und ν (COC)-Schwingungen [8] des THF zuordnen (s. Exp. Teil). Bemerkenswert erscheint ein Vergleich von 15 · THF und 15 · CHCl₃ im ν (CO)- und ν (FeH)-Bereich (Tabelle 1). Zunächst ist festzustellen, daß es sich bei den Dop-

Schema 2. Platztausch-Verhalten von 15 in Lösung. (Nur die mit * gekennzeichneten CO-Grupppen nehmen bei Raumtemperatur am schnellen Platzwechsel teil).

Tabelle 1

Charakteristische Festkörper-IR-Absorptionen $[cm^{-1}]$ von $[Fe_2(H)(\mu-PPh_2)(CO)_5(\mu-dppa-P,P')]$ ·THF (15·THF), $[Fe_2(H)(\mu-PPh_2)(CO)_5(\mu-dp\mu a-P,P')]$ ·CHCl₃ (15·CHCl₃) und $[Fe_2(\mu-H)(\mu-PPh_2)(\mu-CO)(CO)_4(\mu-dppa-P,P')]$ (15c)

Zuordnung	15.THF	15 · CHCl ₃	15c
ν(NH)		3315 s-m, sf	3335 s
ν(NH · · · O)	3140 s-m, br		
$\nu(CH_2)$	2980 s		
-	2870 s-m		
ν (CO) endst.	2041 s-m, sf		
	2021 m, sf	2030 m, sf	2034 s
	1970 sst	1973 sst	1998 m-st
	1950 sst	1955 sst	1974 sst
	1930 st	1935 st	1941 sst
	1920 st	1924 st	
	1880 s-m, Sch	1884 s-m, Sch	
v(FeH)	1765 s-m		
	1735 s-m	1735 s	
v(CO) Brücke			1725 m-st
v(FeHFe)?			1130 s, br
δ(FeCO)	633 st	633 m-st	627 Sch
	621 m	622 m	616 st
	608 st	608 st	
	593 m	593 s-m	572 sst
	563 m	566 m	
	541 st	543 st	545 st

Abkürzungen: sst = sehr stark, st = stark, m = mittel, s = schwach, ss = sehr schwach, sf = scharf, br = breit, Sch = Schulter.

pelbanden 1930/1920 bzw. 1935/1924 cm⁻¹ jeweils um eine ν (CO)-Bande mit zwei Maxima handelt. Ihre Aufspaltung könnte auf Packungseffekten im Kristall beruhen. Unter dieser Annahme würde das IR-Spektrum von 15 · CHCl₃ (Punktgruppe C₁) mit 5 ν (CO)- und einer (FeH)-Valenzschwingungsbande [57] voll den Erwartungen entsprechen. Dagegen weist 15 · THF noch zusätzlich eine scharfe ν (CO)-Bande bei 2041 und eine schwache bis mittelintensive ν (FeH)-Absorption bei 1765 cm⁻¹ auf. Man könnte beide Banden ebenfalls auf Packungseffekte im Kristall zurückführen. Es wäre aber auch denkbar, daß durch die THF-Koordination an die NH-Gruppe des dppa erst *spektrometrisch deutlich wird*, daß es sich bei der trigonal-planaren NH-Gruppe um eine prochirale [drei verschiedene Substituenten: H, PFe(CO)₃, PFe(CO)₂H] bzw. enantiofaciale Gruppe handelt, die durch das im Molekül bereits vorhandene Asymmetriezentrum *diastereofacial* [58] wird. Sollte das THF in 15 \cdot THF in einer nichtlinearen Wasserstoffbrückenbindung gemäß Strukturausschnitt A gebunden sein, so könnte der Stickstoff durch Wechselwirkung mit einem Wasserstoff des THF chiral werden, und 15 \cdot THF läge dann im Festzustand nicht als Enantiomerenpaar, sondern als Diastereomerenpaar vor.

Von diesen wären dann tatsächlich zwei ν (FeH)-Banden und auch eine Verdopplung von ν (CO)-Absorptionen, die teilweise zusammenfallen können, zu erwarten. Auf diese Weise würde auch verständlich, daß **15** · CHCl₃, in dem CHCl₃ keine Wasserstoffbrückenbindungen eingeht, völlig normales IR-Absorptionsverhalten zeigt.

Das solvatfreie Isomere **15c** liefert im Festkörper-IR-Spektrum im Vergleich zu denen von **15** THF und **15** · CHCl₃ (Tabelle 1) zwar auch eine Bande im Bereich der (FeH)-Valenzabsorptionen (1725 cm⁻¹), jedoch kann sie aufgrund ihrer großen Intensität zweifelsfrei einer Brücken-CO-Valenzschwingung zugeordnet werden. Die ν (FeHFe)-Bande ist eigentlich nur im Raman-Spektrum zu erwarten. Sie konnte aber wegen Zersetzung der Substanz im Laserlicht nicht ermittelt werden. Entsprechend seiner C_s-Symmetrie zeigt **15c** noch vier ν (CO)-Banden endständiger CO-Gruppen (2 A' + 2 A'').

Wie aus dem ³¹P{¹H}-NMR-Spektrum hervorgeht, liegt **16** THF zumindest in Lösung (CDCl₃/CD₂Cl₂; 1/1) als *trans*-, *cis*-Isomerengemisch **16a,b** vor.

16a trans-Isomer (75%)

16b cis-Isomer (25%)

Die Bezeichnungen *trans* und *cis* beziehen sich dabei auf die Stellung der verbrückenden PPh₂-Gruppe zum PNP-Gerüst des dppa. Die Phosphorresonanzsignale des *trans*-Isomeren finden sich bei $\delta = 170.6$ (t) und 104.5 ppm (d), diejenigen des *cis*-Isomeren bei $\delta =$ 179.5 (t) und 110.5 ppm (d). Aus ihren Integrationsverhältnissen geht hervor, daß bei Raumtemperatur ein *trans / cis*-Isomerenverhältnis von 3:1 vorliegt. Die Werte der ² J(³¹ P³¹ P)-Kopplungskonstanten betragen 109 Hz für das *trans*-16a, bzw. 55 Hz für das *cis*-Isomere 16b und liegen somit im Erwartungsbereich [35,36].

Im Festkörper-IR-Spektrum von 16 · THF sind acht ν (CO)-Banden unterschiedlicher Intensität im Bereich von 2030–1880 cm⁻¹ beobachtbar (s. Exp. Teil). Ihr Auftreten könnte auf Packungseffekte im Kristall zurückzuführen sein, da einige der Absorptionsbanden bei Variation des Preßdruckes Intensitätsschwankungen zeigen. Es ist jedoch sehr wahrscheinlich, daß die Verbindung auch im Festzustand als Isomerengemisch vorliegt. Wie vor kurzem gezeigt werden konnte [35], entstehen ähnliche, nicht auftrennbare *cis / trans*-Isomerengemische auch bei der Synthese von Komplexen mit Fe₂(μ -PPh₂)(CO)₄(μ -dppm)-Grundgerüst.

2.6. $[Fe(CO)_2(NO)dppa]BF_4$ (17)

Die Reaktion von $6 \cdot \text{THF}$ mit NOBF₄ führt zur Spaltung der zweikernigen Eisenverbindung. Unter gleichzeitiger Freisetzung von [Fe(CO)₅] entsteht dabei 17 (Schema 1/VI). Obwohl der Angriff des Nitrosylkations elektrophil erfolgt, findet keine Oxidation der Eisenatome statt, denn die im Festkörper-IR-Spektrum zu beobachtende ν (NO)-Absorption bei 1803 cm⁻¹ belegt eindeutig das Vorliegen von NO⁺. Dies wird auch durch die nahezu linearen Anordnungen Fe(1)-N(1)-O(1) [Winkel: 178.3(5)°] und Fe(2)-N(3)-O(4) [Winkel: 178.6(1)°] in den beiden unterschiedlich anionenkoordinierten 17a,b (Abb. 7) bewiesen. Die Röntgenstrukturanalyse zeigt nämlich, daß das Kation von 17 im Festzustand zwei Arten von $(NH \cdot F)$ -Wasserstoffbrückenbindungen mit den Tetrafluoroborationen ausbildet und dementsprechend zwei verschiedene Komplexe gleicher Zusammensetzung vorliegen.

Bei der einen Hälfte der Ionenpaare wird das Anion über eine 'lineare' 3-Zentren-4-Elektronen-Wasserstoffbrückenbindung (LHB [59]) fixiert (Abb. 7), deren NHF-Bindungswinkel 166.9° beträgt. Die Abweichung

Abb. 7. Moleküldarstellungen von 17 (ohne Phenyl-H-Atome). Im Kristall existieren zwei verschiedene, voneinander unabhängige Ionenpaare, Ausgewählte Abstände [pm] und Bindungswinkel [°]. Fe(1)-N(1) 173.4(5), N(1)-O(1) 114.9(7), Fe(1)-C(2) 181.9(6), C(2)-O(2) 112.7(8), Fe(1)-C(3) 170.6(6), C(3)-O(3) 112.2(7), Fe(1)-P(1) 225.0(1), Fe(1)-P(2) 224.2(2), N(2) P(1) 169.7(4), N(2)-P(2) 167.3(3), P(1)-P(2) 257.6(2), Fe(2)-N(3) 169.1(5), Fe(2)-C(5) 181.5(6), Fe(2)-C(6) 174.0(6), N(3)-O(4) 113.7(7), C(5)-O(5) 112.9(8), C(6)-O(6) 113.8(8), Fe(2)-P(3) 224.4(2), Fe(2)-P(4) 225.4(2), N(4)-P(4) 166.6(3), N(4)-P(3) 169.5(4), P(3)-P(4) 258.6(2); P(1)-N(2)-P(2) 99.7(2), P(3)-N(4)-P(4) 100.6(2), P(1)-Fe(1)-P(2) 70.0(1), P(3)-Fe(2)-P(4) 70.2(1), N(1)-Fe(1)-P(1) 122.8(2), N(3)-Fe(2)-P(3) 127.9(2), C(3)-Fe(1)-P(1) 112.2(2), C(5)-Fe(2)-P(3) 91.5(2), C(2)-Fe(1)-P(1) 91.7(2), C(6)-Fe(2)-P(3) 104.2(2), N(1)-Fe(1)-C(2) 93.8(3), C(2)-Fe(1)-C(3) 96.6(3), N(1)-Fe(1)-C(3) 123.5(2), Fe(1)-N(1)-O(1) 178.3(5), Fe(2)-N(3)-O(4) 178.1(6), N(2)-P(1)-P(2) 39.8(1), N(4)-P(3)-P(4) 39.3(1), NH + F. Wasserstoffbrückenbindungssysteme von **17** im Festzustand, Abstände [pm] und Bindungswinkel [°]: N(4)-H(4) 93.3, H(4)-F(5) 185.3, F(5)-B(2) 132.3, N(4)-F(5) 276.9, N(2)-H(2)-F(2) 210.0, H(2)-F(3) 216.7, F(2)-B(1) 135.6, F(3)-B(1) 133.0, N(2)-F(2) 291.5, N(2)-F(3) 304.8; N(4)-H(4)-F(5) 166.9, F(2)-H(2)-F(3) 58.8, N(2)-H(2)-F(2) 143.3, N(2)-H(2)-F(3) 154.2. Abweichung von H(2) aus der Ebene N(2)F(2)F(3); 12 pm.

um 13.1° von der idealen linearen Koordinationsgeometrie ist dabei nicht ungewöhnlich, da auch die Bindungswinkel sogenannter 'linearer' NHO-Bindungen selten 180° betragen [60]. Die zweite Hälfte der Ionenpaare bildet symmetrische bifurcated (NH $\cdot \cdot$ F)-Wasserstoffbrückenbindungen (BHB [59]) aus (Abb. 7). Dieser Bindungstyp ist sehr selten und an Tetrafluoroborationen noch nicht beobachtet worden. Wie Abbildung 7b verdeutlicht, liegt das dreifach koordinierte Wasserstoffatom H(2) praktisch in einer Ebene mit dem Stickstoffatom N(2) und den Fluoratomen F(2) und F(3) des chelatisierend wirkenden Anions. Die $(H \cdot \cdot F)$ -Bindungsabstände H(2)-F(3) und H(2)-F(2) sind mit 216.7 bzw. 210.0 pm fast gleich und um etwa 40 pm kleiner als die Summe der van-der-Waals-Radien von Wasserstoff und Fluor, welche 255 pm betragen würde [61]. Die strukturellen Gegebenheiten entsprechen somit in allen Punkten den von Donohue [62] vorgeschlagenen Kriterien für eindeutige bifurcated H-Brückenbindungen. Die $(NH \cdot F_2)$ -BHB besitzt einen (im Vergleich zur LHB) größeren (H · · F)-Bindungsabstand und somit eine geringere HF-Bindungsstärke. Dementsprechend ist ihr NH-Bindungsgrad aber höher, so daß die breiten IR-Absorptionsbanden (ν (NH)BHB = 3250, δ (NH)- $BHB = 1241 \text{ cm}^{-1}$) im Vergleich zu denen der linearen $(NH \cdot F)$ -Bindung $(\nu(NH)LHB = 3180, \delta(NH)LHB$ $= 1225 \text{ cm}^{-1}$) zu höheren Wellenzahlen verschoben sind.

Löst man 17 in CH₂Cl₂, so bleiben die NH $\cdot \cdot$ F-Wasserstoffbrückenbindungen weitestgehend erhalten. Diese Tatsache zeigt sich einerseits an der nur sehr geringen Leitfähigkeit, andererseits an der starken Tieffeldverschiebung des NH-Signals, welches im 'H-NMR-Spektrum (CD₂Cl₂) bei $\delta = 7.35$ ppm erscheint. Auch in der Gasphase (Massenspektrum/FD) sind die beiden Ionenpaare, welche ein Proton anlagern, eindeutig nachweisbar. Die Eisenatome liegen im Kation von 17 (Abb. 7) tetragonal-pyramidal konfiguriert vor. Wiederum wird der Ligand 1 konformativ stark beansprucht, denn die chelatisierende Wirkungsweise an nur einem Metallzentrum bewirkt eine starke Verkleinerung des PNP-Winkels, welcher bis auf 99.7° (17b) bzw. 100.6° (17a) zurückgeht. Aufgrund dieser Koordinationsgeometrie geht der PP-Abstand auf etwa 258 pm zurück und liegt damit in einer Größenordnung bei der elektronische Wechselwirkungen zwischen den Phosphoratomen nicht mehr auszuschließen sind.

Hinweise auf derartige Wechselwirkungen lassen sich in den Kernresonanzspektren von 17 finden.

Zum einen zeigt der Komplex eine sehr ungewöhnliche chemische Verschiebung im ³¹P{¹H}-NMR-Spektrum ($\delta = 55.5$ ppm), da bei den zweikernigen Eisenkomplexen des Liganden dppa (5, 6, 7a-c, 9, 15 und 16) die Signale der Phosphoratome des komplexgebundenen 1 generell oberhalb von 100 ppm zu finden sind. Daß diese außergewöhnliche Signallage nicht von elektronischen Effekten der Nitrosylgruppe herrührt, kann durch Vergleich mit den ³¹ P{¹H}-NMR-Spektren der bereits früher publizierten [63] zweikernigen Eisenverbindungen [Fe₂(NO)₄(μ -dppa)₂] (18) und [Fe₂(CO)₂(NO)₂(μ -dppa)] (19) belegt werden, deren Phosphorresonanzsignale ebenfalls bei 98.5 bzw. 99.4 ppm erscheinen.

Einen weiteren Hinweis auf elektronische Wechselwirkungen zwischen den Phosphoratomen gibt das ¹³C{¹H}-NMR-Spektrum des in CD₂Cl₂ gelösten 17. Auffallend ist hier die Hochfeldverschiebung der ¹³C_{*ipso*}-Kohlenstoffatome, deren Signal bei $\delta =$ 132.0 ppm zwischen den Signalen der *para*- und *ortho*-¹³C-Kohlenstoffe registriert wird. Eine derartige Signallage wurde von uns bislang nur dann beobachtet, wenn es sich bei dem am Phenylrest gebundenen Phosphoratom um fünfbindigen Phosphor handelte [64].

3. Experimenteller Teil

Alle Umsetzungen erfolgten unter Ausschluß von Luftsauerstoff und Feuchtigkeit in einer Stickstoffatmosphäre. Die Lösungsmittel waren entwässert und N_2 gesättigt. Die Schmelzpunkte wurden in abgeschmolzenen Kapillaren ermittelt. Der Ligand dppa (1) wurde nach der Methode von Nöth und Meinel [5] synthetisiert, jedoch in deren Abänderung mehrfach aus heißem Ethanol umkristallisiert.

Die C-, H- und N-Analysen wurden mit einem Carlo Erba Elemental Analyser Modell 1106 bzw. 1108 durchgeführt. Massenspektren: Finnigan Mat 212, Ionisation durch Felddesorption bzw. Elektronenstoß. Schmelzpunkte (unkorrigiert, in abgeschmolzenen Kapillaren ermittelt): Electrothermal IA 6304. Leitfähigkeitsmessung: WTW LF 90 Meßgerät mit Meßsonde KLE 1 in Methylenchlorid. Die Kernresonanzspektren wurden in 5 mm Röhrchen mit einem Jeol JNM-EX-270 FT-NMR Spektrometer bei Raumtemperatur registriert, Meßfrequenzen: 270 MHz (¹H-NMR); 69.94 MHz $({}^{13}C{}^{1}H{}^{1}-NMR{})$ und 109.4 MHz $({}^{31}P{}^{1}H{}^{1}-NMR{})$. Ausnahme: Die ¹³C{¹H}-NMR-Spektren von 5, 9 · 2 THF und 10; Jeol JNM-GX-400 FT-NMR-Spektrometer, Meßfrequenz 100.533 MHz, wobei die Probe von 5 in ein 10mm Röhrchen abgefüllt wurde. Die δ -Werte (ppm) sind auf δ (TMS) = 0 bezogen unter Verwendung der Lösungsmittelsignale als innere Referenz. Die ³¹P{¹H}-NMR-Spektren wurden mit 85-proz. Phosphorsäure als externen Standard vermessen. Verwendete Abkürzungen: "quart." = Quartett, "quint." = Pseudoquintett, "t" = Pseudotriplett, J = virtuelle Kopplungskonstante. Die Simulationen der ¹³C-NMR-Spektren von 5 und 9 · 2 THF erfolgten mit dem JEOL-Programm COMIC, das auf dem LAOCOON-Algorithmus basiert. Als Halbwertsbreite der C-Signale wurde 3 Hz eingesetzt. IR-Spektren: Perkin-Elmer

	5	6 · THF	9 · 2 THF
Summenformel	$C_{32}H_{21}Fe_2NC_8F_2$	C ₃₅ H ₂₉ Fe ₂ NO ₈ P ₂	C ₆₁ H ₅₈ Fe ₂ N ₂ O ₇ P ₄
Molmasse [g mol ⁻¹]	721.2	765.2	1166.7
Farbe, Zustand	gelbe Säulen	dunkelrote Quader	dunkelrote Prismen
Kristalldimensionen [mm ³]	$0.60 \times 0.20 \times 0.20$	$0.80 \times 0.50 \times 0.50$	0.90 imes 0.80 imes 0.70
Raumgruppe	P212121	$P2_1/n$	$P2_1/c$
Kristallsystem	orthorhombisch	monoklin	monoklin
<i>a</i> [pm]	964.6(4)	1178.8(4)	1529.2(13)
<i>b</i> [pm]	1686.0(6)	1660.1(6)	2058.9(16)
	1930.4(5)	1782.1(4)	1930.6(17)
ß [⁶]		92.32(2)	110.36(8)
Zellvolumen V [nm ³]	3.139(1)	3.485(1)	5.700(8)
Formeleinheit Z	4	4	4
$\rho_{\rm ber}$ (g cm ⁻³)	1.53	1.445	1.36
Meßtemperatur [K]	200	210	200
Diffraktometer	Siemens P4	Siemens P4	Siemens P4
Strahlung (Graphitmonochromator)	ΜοΚα	ΜοΚα	ΜοΚα
Meßverfahren	w-scan	w-scan	w-scan
Beugungswinkelbereich [°]	3 < 2 <i>0</i> < 54	3 < 2 <i>0</i> < 54	3 < 2 <i>\O</i> < 50
Scan-Geschwindigkeit [°min ⁻¹]	3-30	3-30	3-30
Gesamtzahl gemessener Reflexe	5968	8470	13126
Asymmetrischer Datensatz	5654 Refl., davon 3097 mit	7475 Refl., davon 4780 mit	10092 Refl., davon 6574 mit
•	$F > 4\sigma(F)$	$F > 4\sigma(F)$	$F > 4\sigma(F)$
Verfeinerte Parameter	406	433	685
Absorptionskoeffizient μ [mm ⁻¹]	1.065	0.967	0.675
R/R _w	0.043/0.037	0.042/0.038	0.043/0.041
Restelektronendichten	0.57/-0.48	0.58/-0.63	0.69/-0.48
Δρ (max/min) [e Å = ³)			

 Tabelle 2

 Struktur- und Meßdaten der Strukturbestimmungen von 5.6 · THF und 9 · 2 THF (Standardabweichungen in Klammern)

Tabelle 3

Struktur- und Meßdaten der Strukturbestimmungen von 10, 7b und 17 (Standardabweichungen in Klammern)

	10	7b	17
Summenformel	$C_{42}H_{10}Fe_2NO_0P_1$	C ₄₉ H ₁₆ Fe ₂ NO ₂ P ₁	C 10 H 11 BF, FeN, O, P,
Molmasse [g mol ~ 1]	849.3	955.4	614.0
Farbe, Zustand	orangefarbene Rauten	gelbe Prismen	rote Platten
Kristalldimensionen (mm ³)	$0.80 \times 0.50 \times 0.40$	0.80 × 0.60 × 0.40	1.00 × 0.50 × 0.50
Raumgruppe	Phon	P21/c	РĨ
Kristallsystem	orthorhombisch	monoklin	triklin
u (pm)	1905.3(5)	1159.4(8)	997.3(3)
<i>b</i> (pm)	1137.3(3)	2898.4(15)	1538.7(4)
c (pm)	1777.9(6)	1449.6(17)	1950.5(6)
a (°)			79.89(2)
6 [°]		110.32(9)	75.86(2)
γ (°)			74.27(2)
Zellvolumen V [nm ³]	3.851(2)	4.568(8)	2.750(1)
Formeleinheit Z	4	4	4
pber. [g cm ⁻¹]	1.46	1.39	1.48
Meßtemperatur [K]	200	293	293
Diffraktometer	Siemens P4	Siemens P4	Siemens P4
Strahlung (Graphitmonochromator)	ΜοΚα	ΜοΚα	ΜοΚα
Meßverfahren	w-scan	w-scan	o)-SCAB
Beugungswinkelbereich [°]	3 < 20 < 54	3 < 20) < 52	3 < 20 < 54
Scan-Geschwindigkeit (* min 👎)	3-29.30	3-29.30	3-29.30
Gesamtzahl gemessener Reflexe	5868	19903	15737
Asymmetrischer Datensatz	4233 Refl.,	8875 Refl.,	12178 Refl.,
	davon 2630 mit $F > 4\sigma(F)$	davon 4039 mit $F > 4\sigma(F)$	dayon 7011 mit $F > 4\sigma(F)$
Verfeinerte Parameter	245	559	703
Absorptionskoeffizient μ [mm ⁻¹]	0.927	0.792	0.723
R/R _w	0.037/0.034	0.050/0.046	0.053/0.045
Restelektronendichten	0.47 / - 0.64	0.47 / - 0.43	0.67 / - 0.67
Δρ (max/min) [e Å ⁻¹]		v	

101

Tabelle 4 Struktur- und Meßdaten der Strukturbestimmung von $15 \cdot CHCl_3$ (Standardabweichung in Klammern)

Summenformel	C42H33Cl3Fe2NO5P3
Molmasse [g mol ^{- 1}]	942.65
Farbe, Zustand	orange Prismen
Kristalldim. [mm ³]	0.50×0.50×0.40
Kristallsystem	orthorhombisch
Raumgruppe	Pbca
a [pm]	1390.9(8)
<i>b</i> [pm]	1956.7(16)
<i>c</i> [pm]	3100.7(25)
Zellvolumen V [nm ³]	8.439(11)
Formeleinheiten pro Zelle Z	8
$\rho_{\rm ber}$ [gcm ⁻³]	1.484
Meßtemperatur [K]	293(2)
Diffraktometer	Siemens P4
Strahlung	ΜοΚα
Wellenlänge [pm]	71.073
Meßverfahren	w-scan
Gemessener Θ -Bereich [°]	1.91-27.17
Scan-Geschwind. [°min ⁻¹]	3-30
Indexbereich	$-17 \le h \le 5$
	$0 \le k \le 25$
	$0 \le l \le 39$
Zahl der Reflexe:	
gemessen	12590
unabhängig	9286 (R ₁ == 0.0379)
beobachtet	2995
Absorptionskoeffizient μ [mm ⁻¹]	1.036
Strukturverfeinerung	Vollmatrix Least-Squares an F^2
Daten/Restraints/Parameter	9283/5/489
Goodness-of-Fit an F^2	0.682
Endgültige <i>R</i> -Werte $[1 > 2\sigma(1)]$	R1 = 0.0594, wR2 = 0.1407
R-Werte (sämtliche Daten)	R1 = 0.1547, wR2 = 0.1644
Größtes Maximum	872 und - 727
und Minimum [enm ³]	

983-Spektrometer bzw. Perkin-Elmer 1600 FT-IR-Spektrometer. Verwendete Abkürzungen: siehe Tabelle 1. Die Bezeichnung der Phenylbanden erfolgte, soweit ihre Angaben wegen teilweiser Überlagerungen notwendig war, nach der Nomenklatur von Whiffen [65] in der heute üblichen Schreibweise [44].

Die wichtigsten Struktur- und Meßdaten der Kristallstrukturbestimmungen sind in den Tabelle 2-4 enthalten. Die Einkristalle von 5, 6 · THF, 9 · 2 THF, 7b und 10 wurden aus THF/n-Pentan, der Einkristall von 15. CHCl, aus CHCl,/n-Pentan und der Einkristall von 17 aus Methylenchlorid/n-Heptan gewonnen. Die Strukturen wurden mit direkten Methoden (SHELXTL-PLUS [66]) unter anisotroper Verfeinerung der Nichtwasserstoffatome bestimmt. Die anisotrope Verfeinerung der Nichtwasserstoffatome von 15 · CHCl₃ erfolgte unter Anwendung des Programmes SHELXL93 [67]. Die Elementarzellen wurden mit 18 Reflexen ermittelt. Die Lagen der Wasserstoffatome wurden den Differenz-Fouriersynthesen entnommen und bei der Verfeinerung festgehalten; Wasserstoffatome mit gemeinsamem isotropen Temperaturfaktor.

Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD-404823 (5), CSD-404822 ($6 \cdot$ THF), CSD-404827 (7b), CSD-404825 ($9 \cdot 2$ THF), CSD-404824 (10), CSD-404828 ($15 \cdot$ CHCl₃) und CSD-404826 (17) der Autoren und des Zeitschriftenzitates angefordert werden.

3.1. Allgemeine Synthesevorschrift für die Komplexe 5 und 6 · THF

In einer Belichtungsapparatur werden 9.2 g (25 mmol) $[Fe_2(CO)_q]$ in 200 ml THF suspendient und 4.8 g (12.5 mmol) dppa (1) portionsweise zugesetzt. Das Reaktionsgemisch wird unter Rühren bei Raumtemp. (und Wasserkühlung) der Strahlung einer schwachen UV-Lampe (Braun: TNN 15-32001721/C5; Strahlungsleistung < 1 W) ausgesetzt. Bereits nach kurzer Zeit setzt CO-Entwicklung ein und die Mischung beginnt sich langsam rot zu färben. Nach 9h wird vom unlöslichen Rückstand abfiltriert und die klare, tiefrote Lösung bei Raumtemp. unter vermindertem Druck eingeengt, bis sich ein rubinroter Feststoff abzuscheiden beginnt. Nach 12h bei 0°C scheiden sich 4g 6 · THF ab. Die verbleibende Mutterlauge wird bis zur Trockene eingeengt, wobei 3.9 g eines Gemisches aus 5 und 6 · THF anfallen, dessen Trennung chromatographisch erfolgt (Säulendurchmesser: 4 cm; Laufstrecke: 55 cm; Trägermaterial: Florisil 100–200 mesh; Laufmittelgemisch: Et₂O 50%, THF 33%, n-Heptan 17%). Die gelbe Fraktion wird eluiert, unter Lichtausschluß (!) bei Raumtemp, bis zur Sättigung eingeengt und mit 35 ml n-Pentan versetzt. Der dabei anfallende, zitronengelbe Feststoff 5 wird abfiltriert, mit wenig kaltem n-Pentan nachgewaschen und unter Lichtausschluß im Vakuum getrocknet. Eluiert man zusätzlich die rote Fraktion und arbeitet das Eluat in analoger Weise auf (Lichtausschluß ist nicht notwendig), lassen sich weitere 1.25 g 6 · THF gewinnen. Große, zur Strukturbestimmung geeignete Kristalle beider Verbindungen lassen sich gewinnen, wenn man konzentrierte Lösungen der Substanzen in THF vorsichtig mit n-Pentan überschichtet. Die Produktverhältnisse von 5 und 6 THF sind über die Bestrahlungsstärke und Reaktionszeit stark variierbar. Nach 36h Reaktionszeit ist 6 · THF in 83%-iger Ausbeute isolierbar, von der Verbindung 5 sind dann nur noch Spuren vorhanden.

3.1.1. μ -Bis(diphenylphosphino)amin-P,P'-bis(tetracarbonyleisen) (5)

Ausbeute (nach 9 h Reaktionszeit): 2.15 g (2.98 mmol), 24%. Schmp. (Zers.) > 100 °C. Gef.: C, 53.38; H, 2.90; N, 1.61. $C_{12}H_{21}Fe_2NO_8P_2$ (721.18) ber.: C, 53.29; H, 2.94; N, 1.94%. MS (FD, THF): m/z = 721 [M⁺]. ¹H-NMR [CDCl₃/CD₂Cl₂ (1:1),

20.8 °C]: $\delta = 8.0-7.0$ (m, 20 H, C₆H₅); 4.45 (s, 1 H, NH). ³¹P{¹H}-NMR [CDCl₃/CD₂Cl₂ (1:1), 22.0°C]: $\delta = 115.5$ (s). ¹³C(¹H)-NMR (CD₂Cl₂): $\delta = 213.1$ ["quint." (ABX-System; $X = {}^{13}C$), ${}^{2}J({}^{31}P{}^{13}C) = 18$ Hz, ${}^{4}J({}^{31}P{}^{13}C) = 0.1 \text{ Hz}, {}^{2}J({}^{31}P{}^{31}P) = 60 \text{ Hz}, 8 C, CO];$ 133.4 ["quint." (ABY-System; $Y = {}^{13}C-ipso$), ${}^{1}J({}^{31}P{}^{13}C) = 50-55 \text{ Hz}, {}^{3}J({}^{31}P{}^{13}C) = 0.1-5 \text{ Hz},$ ${}^{2}J({}^{31}P{}^{31}P) = 60 \text{ Hz}, 4 \text{ C}, \text{ C-ipso}, \text{ C}_{6}\text{H}_{5}); 132.5 (``t`', 8$ C, C-o, C_6H_5); 131.6 (s, 4 C, C-p, C_6H_5); 128.2 ("t", 8 C, C-m, C₆H₅). IR (KBr): 3343 m(sf) [ν (NH)]; 3085 s, 3075 s-m, 3030 ss, 3015 ss [ν (CH)]; 2063 st(sf), 2050 st(sf), 2000 m(Sch) + 1985 st, 1955 sst, 1945 st,1935 st, 1925 sst [ν (CO)]; 1300 m-st [δ (NH)]; 1100 m-st [P-Ph sens. q]; 883 st $[\nu(NP_2)/\gamma(HNP_2)]$; 810 s-m(br) $[\nu(NP_2)/\gamma(HNP_2) + \gamma(CH)g]; 655 \text{ m}, 625 \text{ sst}$ + 620 st(Sch), 557 m-st [δ (Fe(CO)], 547 m-st [δ (FeCO) u. $\gamma(\text{HNP}_2)$]; 353 m [$\delta(\text{NP}_2)$] cm⁻¹.

3.1.2. μ -Carbonyl- μ -bis(diphenylphosphino)amin-P,P'bis(tricarbonyleisen)(Fe-Fe)-Tetrahydrofuran (1 / 1) ($\mathbf{6} \cdot C_4 H_8 O$)

Ausbeute: 5.25 g (6.86 mmol), 55%. Schmp. (Zers.) > 100 °C. Gef.: C, 55.45; H, 3.93; N, 1.77. $C_{13}H_{29}Fe$, NO₈P₂ (765.28) ber.: C, 54.93; H, 3.81; N, 1.83%. MS (FD, THF): m/z = 693 [M⁺ – THF]. ⁺H-NMR (CD₂Cl₂, 20.7 °C): $\delta = 7.65 - 7.35$ (m, 20 H, $C_{6}H_{3}$; 4.10 (s, br, 1 H, NH); 3.65 (m, 4 H, CH₂OCH₂, THF); 1.82 (m, 4 H, CH₂CH₂. THF). ³¹P(¹H)-NMR (CD₂Cl₂, 22.0°C); $\delta = 112.3$ (s). ¹³C(¹H)-NMR (THF $d_{\rm B}$, 25.0°C): $\delta = 222.5$ (s, 6 C, CO-endst.); 213.8 [t, ${}^{2}J({}^{31}P{}^{13}C) = 10$ Hz, 1 C, μ -CO]; 138.8 ("t", J =27 Hz, 4 C, C-*lpso*, C₆H₃); 132.0 (s, 8 C, C-o, C₆H₅); 131.6 (s, 4 C, C-p, C_6H_5); 129.0 (s, 8 C, C-m, C_6H_5). IR (KBr): 3320 ss(br); 3080 Sch⁺ + 3065 s₂m(br)⁺ $[\nu(CH)arom.]; 2985 s-m(br)^*, 2880 s^* [\nu(CH_2), THF];$ 2540 s(br) $[2 \times \delta(NH)]$; 2045 sst, 1990 sst, 1976 sst, 1947 st(Sch), 1941 sst, 1927 sst [v(CO)endst.]; 1745 st $[\nu(CO)Brücke];$ 1460 s $[\delta_{as}(CH_2), THF];$ 1365 ss $[\delta_{1}(CH_{2}), THF]; 1260 \text{ s-m} [\delta(NH)]; 1125 \text{ s-m} [\gamma(CH_{2}), \gamma(CH_{2})]; 11$ THF]; 1100 m [P-Ph sens. q]; 1050 m [ν (COC), THF]; 920 m-st $[\nu(NP_2)/\gamma(HNP_2)]$; 813 m(br) $[\nu(NP_{3})/\gamma(HNP_{3})];$ 635 m $[\delta(FeCO)];$ 620 Sch $[\alpha(CCC)s, Ph] + 608 st, 572 m, 555 m-st [\delta(FeCO) u]$ γ (HNP,)]; 465 s-m, 445 s-m, 425 s-m, 403 m [ν (FeC)]; 350 s $[\delta(NP_2)]$ cm⁻¹.

Mit $\nu(NH \cdot OC_4H_8)$ wegen Verbreiterung der Banden.

3.2. µ-Bis(diphenylphosphino)amin-P-[(n-butyldiphenylphosphin)tricarbonyleisen],P'-(tetracarbonyleisen) (7a)

In eine Lösung von 765 mg (1 mmol) 6 · THF in 25 ml THF werden 0.25 ml (1.04 mmol) n-Butyldiphenylphosphin getropft und bei Raumtemp, gerührt.

Nach 24 h ist eine geringe Aufhellung der Reaktionslösung erkennbar. Das Lösungsmittel wird bei Raumtemp. und unter vermindertem Druck bis zu einem Restvolumen von ca. 5 ml abdestilliert. Nach Zugabe von 40 ml n-Pentan scheidet sich ein rotes Öl ab, welches sich nach 24 h bei -20 °C in eine orangebraune, teerartige Masse umwandelt. Man dekantiert das überstehende n-Pentan ab, löst den Rückstand in 10 ml THF auf und fällt erneut mit 30 ml n-Pentan, wobei das Produkt als beigegelbes Pulver anfällt, welches aus THF/n-Pentan umkristallisiert wird. In hochreiner Form bildet die Substanz feine, zitronengelbe Nadeln aus. Sie werden abfiltriert, zweimal mit jeweils 10 ml n-Pentan nachgewaschen und im Vakuum getrocknet. Ausbeute 720 mg (0.77 mmol), 77%. Schmp. (Zers.) > 115°C. Gef: C, 60.56; H, 4.34; N, 1.00. $C_{47}H_{40}Fe_2NO_7P_3$ (935.45) ber.: C, 60.35; H, 4.31; N, 1.50%. MS (EI, 70eV, Einlaßtemp. 200°C, Quellentemp. 150°C): m/z = 738 $[M^+ - Fe(CO)_5 - H]$, 385 $[dppa^+]$; 298 $[FeP(n-1)_5 - H]$ $Bu)Ph_{2}^{+}; 242 [P(n-Bu)Ph_{2}^{+}].$ 'H-NMR (CDCl₃, 22.4°C): $\delta = 7.9-6.8$ (m, 30 H, C₆H₅); 4.36 (s, 1 H, NH); 2.42 [m, 2 H, $P-CH_2(CH_2)_2CH_3$]; 1.56 [m, 2 H, P-CH₂CH₂CH₂CH₃]; 1.40 ["quart.", ${}^{3}J({}^{1}H{}^{1}H) =$ 6Hz, 2 H, P-(CH₂)₂CH₂CH₃)]; 0.87 [t, ${}^{3}J({}^{1}H{}^{1}H) =$ 6Hz, 3 H, P(CH₂)₃CH₃)], ${}^{31}P({}^{1}H)$ -NMR (CDCl₃, 22°C): $\delta = 128.0 \text{ [dd, } {}^2J({}^{31}P{}^{31}P) = 63 \text{ Hz}, {}^2J({}^{31}P{}^{31}P)$ = 37 Hz, 1 P, dppa, P-koord. an Fe(CO)₃P(n-Bu)Ph₃]; 110.3 [d, ${}^{2}J({}^{31}P) = 63$ Hz, 1 P, dppa, P-koord. an Fe(CO)₄]; 70.7 [d, ² $J({}^{31}P{}^{31}P) = 37$ Hz, 1 P, P(n-Bu)Ph₂], ¹³C(¹H)-NMR (CDCl₃, 22.0 °C): $\delta = 213.8$ [dd, ² $J({}^{31}P{}_{dppa}) = {}^{2}J({}^{31}P{}_{P(n-Bu)Ph}, {}^{32}C) = {}^{30}Hz, 3 C,$ CO, Fe(CO)₄P(n-Bu)Ph₂]; 213.0 [d, ² $J({}^{31}P{}_{13}C) = {}^{2}J({}^{31}P{}_{13}C) = {}^{2}J({}^{31}P{}_{13}C) = {}^{30}Hz, 3 C,$ 19 Hz, 4 C, CO, Fe(CO),]; 136.4 [d, ${}^{1}J({}^{31}P{}^{13}C) = 46$ Hz, 2 C, C-*ipso*, P(n-Bu)Ph₂]; 136.2 [d, ${}^{1}J({}^{M}P{}^{M}C) = 52$ Hz, 2 C, C-ipso, dppa, PPh₂-koord. an Fe(CO)₁P(n-Bu)Ph₂]; 134.2 [d, ${}^{1}J({}^{31}P{}^{13}C) = 56$ Hz, 2 C, C-*ipso*, dppa, PPh₂koord. an Fe(CO)₄]; 132.5 [d, ${}^{2}J({}^{31}P^{13}C) = 11$ Hz, 8 C, C-o, dppa, C₆H₅]; 132.1 [d, ${}^{2}J({}^{31}P^{13}C) = 9$ Hz, 4 C, C-o, $P(n-Bu)Ph_2$; 130.9 (s, 2 C, C-p, dppa, C₆H₅); 130.3 (s, 2 C, C-*p*, dppa, C₆H₅); 129.8 [s, 2 C, C-*p*, P(n-Bu)Ph₂]; 128.3 [d, ${}^{3}J({}^{31}P{}^{13}C) = 9$ Hz, 4 C, C-*m*, P(n-Bu)Ph₂]; 127.8 [d, ${}^{3}J({}^{31}P{}^{13}C) = 15$ Hz, 4 C, C-*m*, dppa, PPh₂-koord. an Fe(CO)₄]; 127.6 [d, ${}^{3}J({}^{31}P{}^{13}C) =$ 13Hz, 4 C, C-m, dppa, PPh₂-koord. an Fe(CO)₃P(n-Bu)Ph₂]; 33.2 [d, ${}^{1}J({}^{31}P{}^{13}C) = 30$ Hz, 1 C, P-CH₂(CH₂)₂CH₃; 26.5 [s. 1 C. PCH₂CH₂CH₂CH₂CH₃]; 24.1 [d, ${}^{3}J({}^{3}P{}^{13}C) = 16$ Hz, 1 C, P(CH₃), CH₃CH₃)]; 13.7 [s, 1 C, $P(CH_1)(CH_2)$]. IR (KBr): 3343 s-m $[\nu(NH)]$; 3080 ss(Sch), 3059 s, 3024 ss, 3009 ss [v(CH)arom.]; 2960 s-m, 2936 s-m, 2876 s, 2860 s [v(CH)aliph.]; 2053 st(sf), 1981 m-st, 1976 m-st, 1950 st, 1930 sst, 1893 sst, 1876 sst [ν (CO)]; 1300 m $[\delta(NH)]$; 1096 m [P-Ph sens. q]; 1044 ss [$\nu(CC)$ aliph.]; 888 m-st $[\nu(NP_2)/\gamma(HNP_2)]$; 652 s, 634 m-st, 628 m-st, 616 m-st, 586 m [δ (FeCO)]; 558 m [δ (Fe(CO) u. γ (HNP,)]; 355 s [δ (NP,)]cm⁻¹.

3.3. μ-Bis(diphenylpho.phino)amin-P-(tetracarbonyleisen),P'-[tricarbonyl(trip::::"ylphosphin)eisen] (7b)

In eine Lösung von 765 mg (1 mmol) 6 · THF in 25 ml THF werden 262 mg (1 mmol) Triphenylphosphin portionsweise eingetragen und bei Raumtemp. gerührt. Innerhalb 20 min färbt sich die Lösung dunkelorange. Nach 2h wird sie bei Raumtemp. und unter vermindertem Druck bis zur Sättigung eingeengt und mit 60 ml n-Pentan versetzt, wobei sich gelbes, mikrokristallines 7b abscheidet. Die Substanz wird abfiltriert, zweimal mit jeweils 10ml n-Pentan gewaschen und im Vakuum getrocknet. Große Kristalle werden durch Überschichten einer konzentrierten Lösung von 7b in THF mit n-Pentan erhalten. Ausbeute: 0.89 g (0.93 mmol), 93%, Schmp. $(Zers.) > 170^{\circ}C.$ Gef.: C, 60.70; H, 3.78; N, 1.15. $C_{49}H_{36}Fe_2NO_7P_3$ (955.44) ber.: C, 61.60; H, 3.80; N, 1.47%. MS (EI, 70eV, Einlaßtemp. 200°C, Quellentemp. 150 °C): $m/z = 758 [M^+ - Fe(CO)_5 - H];$ 440 $[Fe(dppa)^+ - H]; 318 [FePPh_3^+]. ^1H-NMR (CDCl_3,)$ 21.6 °C): $\delta = 8.0-6.5$ (m, 35 H, C₆H₅); 4.45 (s, 1 H, NH). ³¹P{¹H}-NMR (CDCl₃, 22 °C): $\delta = 127.0$ [dd, ²J(³¹P³¹P) = 61 Hz, ²J(³¹P³¹P) = 42 Hz, 1 P, dppa, Pkoord. an Fe(CO)₃PPh₃]; 109.2 [d, ${}^{2}J({}^{31}P{}^{31}P) = 61$ Hz, 1 P, dppa, P-koord. an $Fe(CO)_4$; 77.2 [d, ${}^2J({}^{31}P{}^{31}P) =$ 42 Hz, 1 P, PPh₃], ${}^{13}C{}^{1}H{}^{13}C(2C){}_{,1}$, ${}^{12}Z{}^{10}C{}_{,2}$, ${}^{2}C{}_{,2}$ 4 C, CO, Fe(CO)₄]; 136.5 [d, ${}^{1}J({}^{31}P{}^{13}C) = 53$ Hz, 2 C, C-ipso, dppa, PPh₂-koord. an Fe(CO)₃PPh₃]; 136.4 [d, $^{1}J(^{31}P^{13}C) = 48$ Hz, 3 C, C-*ipso*, PPh₃]; 134.9 [d, ${}^{1}J({}^{31}P{}^{13}C) = 56 \text{ Hz}, 2 \text{ C}, C{}^{-ipso}, \text{ dppa, PPh}_{2}\text{-koord. an}$ Fe(CO)₄]; 133.9 [d, ${}^{2}J({}^{31}P{}^{13}C) = 12 \text{ Hz}, 6 \text{ C}, C{}^{-o},$ PPh_{1} ; 133.2 [d, ²J(³¹P¹³C) = 12 Hz, 4 C, C-o, dppa, PPh_2 -koord. an $Fe(CO)_1PPh_3$; 133.1 [d, ${}^2J({}^{31}P{}^{13}C) =$ 12 Hz, 4 C, C-o, dppa, PPh,-koord. an Fe(CO),]; 131.5 $[d, {}^{2}J({}^{31}P^{13}C) = 2Hz, 2C, C-p, dppa, PPh_{2}$ -koord. an $Fe(CO)_{4}$; 131.0 [s, 2 C, C-p, dppa, PPh₂-koord. an $Fe(CO)_{1}PPh_{1}$; 130.7 (s, 3 C, C-p, PPh_); 128.9 [d, ${}^{3}J({}^{31}P{}^{13}C) = 10 \text{ Hz}, 3 C, C-m, PPh_{3}; 128.4 [d,$ ${}^{3}J({}^{31}P^{13}C) = 15$ Hz, 4 C, C-m, dppa, PPh₂-koord. an Fe(CO)₄]; 128.3 [d, ${}^{3}J({}^{31}P{}^{13}C) = 13$ Hz, 4 C, C-m, dppa, PPh₂-koord. an Fe(CO)₃PPh₃]. IR (KBr): 3348 s-m [ν (NH)]; 3078 s, 3060 s-m, 3028 ss, 3010 ss $[\nu$ (CH)arom.]; 2058 sst(sf), 2026 s, 1984 st(sf), 1956 st, 1932 sst, 1897 sst, 1877 sst [ν (CO)]; 1299 m-st [δ (NH)]; 1096 m-st [P-Ph sens. q]; 886 st $[\nu(NP_2)/\gamma(HNP_2)]$; 651 s, 632 st, 625 st, 615 st, 584 m-st [δ (FeCO)]; 557 m-st [γ (HNP₂) u. δ (Fe(CO)]; 439 s-m,br [ν (FeC)]; 351 s-m $[\delta(NP_2)]$ cm⁻¹.

3.4. μ -Bis(diphenylphosphino)amin-P-(tetracarbonyleisen),P'-[tricarbonyl(trimethylphosphin)eisen] (7c)

In eine Lösung von 765 mg (1 mmol) $6 \cdot \text{THF}$ in 25 ml THF werden 76 mg (1 mmol) Trimethylphosphin

getropft und bei Raumtemp. gerührt. Nach wenigen Minuten hellt sich die Lösung auf und wird nach etwa 1 h gelb bis gelbbraun. Nach 2 h wird die Lösung bei Raumtemp. unter vermindertem Druck bis zur Sättigung eingeengt und mit 30 ml n-Pentan versetzt, wobei sich feinverteiltes, gelbes 7c abscheidet. Die Substanz wird abfiltriert, zweimal mit jeweils 10 ml n-Pentan nachgewaschen und im Vakuum getrocknet. Ausbeute: 645 mg (0.84 mmol), 84%. Schmp. (Zers.) > 130°C. Gef.: C, 53.00; H, 3.96; N, 1.43. $C_{34}H_{30}Fe_2NO_7P_3$ (769.23) ber.: C, 53.09; H, 3.93; N, 1.82%. MS (EI, 70eV, Einlaßtemp. 180°C, Quellentemp. 150°C): m/z = 740 $[M^+ - (CO) - H]; 685 [M^+ - 3 CO]; 656 [M^+ - 4 CO];$ -H]; 628 [M⁺ - 5 CO, -H]; 600 [Fe(CO)₃(Ph₂P=N- PPh_2)PMe₃⁺]; 572 [Fe(CO)₂(PMe₃)Ph₂P=N-PPh₂⁺]; $552 [Fe(CO)_4 (Ph_2P=N-PPh_2)^+]; 216 [Fe(CO)_3PMe_3^+].$ ¹H-NMR (CDCl₃, 22.4 °C): $\delta = 7.75 - 7.15$ (m, 20 H, C_6H_5 ; 4.31 (s, 1 H, NH); 1.62 [d, ${}^2J({}^{31}P^1H) = 10Hz$, 9 H, CH₃]. ³¹P{¹H}-NMR (CDCl₃, 22°C): $\delta = 126.9$ $[dd, {}^{2}J({}^{31}P{}^{31}P) = 62 Hz, {}^{2}J({}^{31}P{}^{31}P) = 36 Hz, 1 P, dppa,$ P-koord. an Fe(CO)₃PMe₃]; 109.9 [d, ${}^{2}J({}^{31}P{}^{31}P) =$ 62 Hz, 1 P, dppa, P-koord. an Fe(CO)₄]; 40.1 [d, ${}^{2}J({}^{31}P{}^{31}P) = 36 \text{ Hz}, 1 \text{ P}, \text{PMe}_{3}]. {}^{13}C\{{}^{1}\text{H}\}\text{-NMR} (\text{CDCl}_{3}, 25.1 °C): \delta = 214.7 [dd, {}^{2}J({}^{31}P{}^{13}C) = 32 \text{ Hz}, {}^{2}J({}^{31}P{}^{13}C) = 29 \text{ Hz}, 3 \text{ C}, \text{CO}, \text{Fe}(\text{CO})_{3}\text{PMe}_{3}]; 213.8 [d,]$ ${}^{2}J({}^{31}P^{13}C) = 19 \text{ Hz}, 4 C, CO, Fe(CO)_{4}]; 137.9 [d,$ ${}^{1}J({}^{31}P{}^{13}C) = 50 \text{ Hz}, 2 C, C-ipso, PPh_{2}\text{-koord.}$ an $Fe(CO)_{3}PMe_{3}$; 134.7 [d, ${}^{1}J({}^{31}P{}^{13}C) = 56Hz$, 2 C, C*ipso*, PPh₂-koord. a. $Fe(CO)_4$]; 133.3 [d, ${}^2J({}^{31}P^{13}C) =$ 13 Hz, 4 C, C-o, PPh₂-koord. an Fe(CO)₃PMe₃]; 132.9 $[d, {}^{2}J({}^{31}P^{13}C) = 13 \text{ Hz}, 4 \text{ C}, C \cdot o, PPh_{2} \cdot \text{koord. an}$ $Fe(CO)_{4}$]; 131.5 [d, ${}^{4}J({}^{31}P^{13}C) = 3$ Hz, 2 C, C-p, PPh_2 -koord. an $Fe(CO)_4$]; 131.0 [d, ${}^4J({}^{31}P^{13}C) < 2Hz$, 2 C, C-p, PPh₂-koord. an Fe(CO)₃PMe₃]; 128.4 [d, ${}^{3}J({}^{31}P{}^{13}C) = 12$ Hz, 4 C, C-m, PPh₂-koord. an $Fe(CO)_{4}$; 128.2 [d, ${}^{3}J({}^{31}P^{13}C) = 11$ Hz, 4 C, C-m, PPh_{2} -koord. an $Fe(CO)_{1}PMe_{1}$; 21.9 [d, ${}^{1}J({}^{31}P{}^{13}C) =$ 30 Hz, 3 C, CH_{3}]. IR (KBr): $3333 \text{ s-m(sf)} [\nu(\text{NH})]$; $3052 \text{ s(br)} [\nu(CH) \text{ arom.}]; 2975 \text{ s}, 2910 \text{ s} [\nu(CH) \text{ aliph.}];$ 2048 st(sf), 1973 st, 1958 st, 1926 sst, 1885 st, 1871 st, 1862 sst [ν (CO)]; 1422 m [δ_{as} (CH₃)]; 1301 m-st [δ (NH) und $\delta_{s}(CH_{1})$]; 1287 m [$\delta(NH)$]; 1095 m [P-Ph sens. q]; 952 m, 894 st $[\nu(NP_2)/\gamma(HNP_2)]$; 680 s, 639 m + 630 m-st(Sch) + 621 st, 579 m-st [δ (FeCO)]; 555 m $[\gamma(\text{HNP}_{,})$ u. $\delta(\text{FeCO})];$ 452 s, 439 s, 427 s, 415 s $[\nu(FeC)]cm^{-1}$.

3.5. μ -Carbonyl-bis/ μ -bis(diphenylphosphino)amin-P,P']-bis(dicarbonyleisen)(Fe-Fe)-Tetrahydrofuran (1 /2) (9 · 2 C₄H₈O)

In einer Belichtungsapparatur werden 2.3 g (3 mmol) $6 \cdot \text{THF}$ in 350 ml THF gelöst und 1.16 g (3 mmol) festes dppa (1) portionsweise zugesetzt. Die Reaktionslösung wird unter Rühren bei Raumtemp. (und Wasserkühlung) 7 h mit UV-Licht bestrahlt (Hanau TQ 150, Strahlungsleistung: 25 W), wobei Gasentwicklung und eine deutliche Farbvertiefung eintritt. Anschließend wird das Lösungsmittel bei Raumtemp. unter vermindertem Druck so weit entfernt, bis sich ein brauner bis rotvioletter Feststoff abzuscheiden beginnt. Mit 150 ml n-Pentan wird die Fällung vervollständigt. Sodann wird der abfiltrierte Niederschlag mit möglichst wenig (100-200 ml) THF aufgenommen. Diese Lösung wird vorsichtig mit dem gleichen Volumen n-Pentan überschichtet, wobei das Produkt zunächst in feinen, beigebraunen Nadeln auskristallisiert, die sich nach wenigen Tagen quantitativ in große, tiefdunkelrote Prismen der Verbindung 9.2 THF umwandeln. In den meisten Fällen entfärbt sich dabei die Lösung nahezu vollständig. Ausbeute: 2.7 g (2.31 mmol), 77%. Schmp. $(Zers.) > 143 \,^{\circ}C.$ Gef.: C, 62.85; H, 5.09; N, 2.43. $C_{61}H_{58}Fe_2N_2O_7P_4$ (1166.73) ber.: C, 62.80; H, 5.01; N, 2.40%. MS (EI, 70 eV, Einlaßtemp. 250°C, Quellentemp. 150 °C bez. auf ⁵⁶Fe): $m/z = 887 [M^+ - 2 THF - 2 CO - H - C_6 H_6]$; 810 [M⁺ - 2 THF - 2 CO - 2 C_6H_6]; 385 [dppa⁺]. ¹H-NMR (CDCl₃, 22.4°C): $\delta =$ 7.95-6.90 (m, 40 H, C₆H₅); 3.96 (s, br, 2 H, NH); 3.77 (m, 8 H, CH₂OCH₂, THF); 1.86 (m, 8 H, CH₂CH₂, THF), ³¹P{¹H}-NMR (CDCl₃ 22.0°C); $\delta = 114.0$ (s). ¹³C(¹H)-NMR (CDCl₃, 25 °C): $\delta = 232.8$ (s, br, 5 C, CO); 139.8 [pseudononett (ABCDX-System, $X = {}^{13}C$ ipso, ${}^{1}J({}^{31}P{}^{13}C) = 50$ Hz, ${}^{2}J_{N}({}^{31}P{}^{31}P) = 50$ Hz, ${}^{J}_{J_{P_{c}}(31P^{31}P)} = -50$ Hz, alle weiteren ${}^{J}J({}^{31}P^{13}C)$ bzw. ${}^{J}J({}^{31}P^{31}P)$ entsprechen 0 Hz, 8 C, C-*ipso*, C₆H₅]; 131.1 (s, 16 C, C=0, $\dot{C}_{6}H_{5}$); 129.7 (s, 8 C, C=p, $C_{6}H_{5}$); 127.9 $(s, 16 C, C_{\circ}m, C_{6}H_{5}); 67.9 (s, 4 C, CH_{2}OCH_{2}, THF);$ 25.9 (s, 4 C, CH, CH, THF). IR (KBr): 3165 m(br) $[\nu(NH \cdots O)];$ 3080 s, 3056 m, 3026 ss, 3010 ss [v(CH)arom.]; 2982 s-m(br), 2942 s(Sch), 2858 m [v(CH₂), THF]; 1972 sst, 1918 sst, 1881 sst, 1866 sst [v(CO)endst.]; 1691 st [v(CO)Brücke]; 1460 s-m $[\delta_{ax}(CH_2), THF]; 1365 s [\delta_{y}(CH_2), THF]; 1290 m(br),$ 1265 m(br) [δ (NH · · · O)]; 1127 s-m [γ (CH,), THF]; 1096 m-st [P-Ph sens. q]; 1054 m [ν (COC), THF]; 889 st(br), 800 m-st [ν (NP,)/ γ (HNP,)]; 618 m-st, 599 m, 568 st, 551 st [8(FeCO)]; 451 m-st, 425 m-st, 404 m-st $[\nu(FeC)]; 368 \text{ s} [\delta(NP_2)] \text{ cm}^{-1}.$

3.6. μ-Diphenylphosphido-μ-bis(diphenylphosphino)amido-P,P' bis[tricarbonyleisen(I)] (Fe-Fe) (10)

1.15 g (1.5 mmol) $6 \cdot$ THF gelöst in 30 ml THF werden auf – 78 °C gekühlt und durch tropfenweisen Zusatz von 0.94 ml einer 1.6 molaren n-Butyllithium/n-Hexan-Lösung lithiiert. Nach 15 min Rühren werden 0.28 ml (1.5 mmol) Chlordiphenylphosphin zugesetzt. Beim Erwärmen auf Raumtemp. hellt die klare, tiefrote Lösung geringfügig auf. Nach 20 min wird das Lösungsmittel unter vermindertem Druck vollständig entfernt und der Rückstand in 25 ml CH₂Cl₂ aufgenommen, wobei sich durch nicht gelöstes LiCl eine Suspension bildet. Der feinverteilte Niederschlag wird durch Filtrationschromatographie (Florisil 100-200 mesh; CH₂Cl₂) abgetrennt, das Eluat bis zur Sättigung eingeengt und mit 75 ml n-Pentan versetzt, wobei ein orangeroter Feststoff ausfällt. Dieser wird aus THF/n-Pentan umkristallisiert. Die dabei ausgebildeten orangeroten Prismen dienten zur Anfertigung der Kristallstrukturanalyse. Als Nebenprodukt kristallisierte $[(OC)_4Fe(\mu-dppa)Fe(CO)_3P(n-dp$ Bu)Ph2] (7a) in feinen gelben Nadeln aus, welche mechanisch abgetrennt wurden. Ausbeute an 10: 840 mg (0.99 mmol), 66%. Schmp. (Zers.) > 216°C. Gef.: C, 59.87; H, 3.58; N, 1.35. C_4 , H_{30} Fe₂NO₆P₃ (849.32) ber.: C, 59.40; H, 3.56; N, 1.65%. MS (FD, THF): $m/z = 849 \text{ [M^+]}$. ¹H-NMR (CD₂Cl₂, 22.5 °C): $\delta =$ m/2 = 349 [M]. Here $(CD_2CI_2, 22.5 C)$, U = 8.0-7.1 (m, 30 H, C_6H_5). $^{31}P[^{1}H]$ -NMR (CD_2CI_2 , 22.0 °C): $\delta = 235.8$ [t, $^{2}J(^{31}P_N^{-31}P_{FeFe}) = 31$ Hz, 1 P, μ -PPh₂]; 71.6 [d, $^{2}J(^{31}P_N^{-31}P_{FeFe}) = 31$ Hz, 2 P, μ -dppa⁻]. $^{13}C[^{1}H]$ -NMR (THF- d_8): $\delta = 217.7$, 215.2 (m, zusammen 6 C, CO); 145.5 ("t", J = 34 Hz, 4 C, C-ipso, N-PPh₂); 142.6 (d, J = 29 Hz, 2 C, C-ipso, μ -PPh₂); 132.7 (d, J = 10 Hz, 4 C, C-o, μ -PPh₂); 131.1 ("t", J = 6 Hz, 8 C, C-o, N-PPh₂); 130.8 (s, 2) C, C-p, µ-PPh₂); 130.0 (s, 4 C, C-p, N-PPh₂); 129.3 (d, J = 10 Hz, 4 C, C-m, μ -PPh₂); 128.9 ("t", J =6 Hz, 8 C, C-m, N-PPh₂). IR (KBr): 3077 s, 3058 s-m, 3022 ss, 3006 ss, 2999 ss [ν (CH)arom.]; 2056 s-m(sf), 2017 st(sf), 1987 sst + 1980 st Sch, 1953 sst, 1921 m $[\nu(CO)];$ 1142 st $[\nu(P + N)];$ 1100 m [P-Ph sens. q]; 779 s-m [ν (P-N)]; 625 st, 609 st + 601 m-st Sch, $[\delta(\text{FeCO})]; 557 \text{ m} [\gamma(\text{NP}_{2})]; 465 \text{ s-m}, 434 \text{ s-m}, 415$ $s=m, [\nu(FeC)]cm^{-1}.$

3.7. μ -Diphenylphosphido- μ -bis(diphenylphosphino)amin-P-[dicarbonyl-hydrido-eisen(1)],P'-[tricarbonyleisen(1)] (Fe=Fe)=Tetrahydrofuran (1 / 1) (15 · C_4H_8O)

In einer Belichtungsapparatur werden 1.53 g (2 mmol) $6 \cdot \text{THF}$ und 0.35 ml (2 mmol) Diphenylphosphin in 300 ml THF gelöst und unter Rühren bei Raumtemp. (und Wasserkühlung) 6h mit UV-Licht (Hanau TQ 150, 25 W) bestrahlt, wobei sich die Reaktionslösung langsam orange bis gelbbraun verfärbt. Danach wird bei Raumtemp. unter vermindertem Druck bis zur Sättigung eingeengt und mit 200 ml n-Pentan versetzt, wobei feinverteiltes, gelbes 15 · THF ausfällt. Es wird abfiltriert, mit n-Pentan nachgewaschen und im Vakuum getrocknet. Ausbeute: 1.42 g (1.54 mmol), 77%. Schmp. (Zers.) > 156 °C. Gef: C, 60.45; H, 4.32; N, 1.39. C₄₅H₄₀Fe₂NO₆P₃ (895.43) ber.: C, 60.36; H, 4.50; N, 1.56%. MŠ (FD, THF): m/z = 851 [M⁺ + CO – THF]; 767 [M⁺ – 2 CO – THF]. ¹H-NMR (CDCl₃, 22.8 °C): $\delta = 7.90 - 7.20$ (m, 30 H, C₆H₅); 4.17 [dt, ²J(³¹P_N⁻¹H) $={}^{4}J({}^{34}P_{\text{FeFe}} H) = 10 \text{ Hz}, 1 \text{ H}, \text{ NH}]; 3.73 \text{ (m, 4 H,}$ CH₂OCH₂, THF); 1.85 (m, 4 H, CH₂CH₂, THF); -9.36 [dt, ${}^{2}J({}^{31}P_{FeFe}{}^{1}H) = 54 Hz$, ${}^{2}J({}^{31}P_{N}{}^{1}H) = 27 Hz$, 1 H, μ -H]. ³¹P{¹H}-NMR (CDCl₃, 22.0 °C): δ = 180.0 [t, 1 P, μ -PPh₂, ²J(³¹P_{FeFe}) = 55 Hz]; 110.7 [d, 2 P, μ -dppa, ²J(³¹P_N) = 55 Hz]. ¹³C{¹H}-NMR (CDCl₃, 25.1 °C): $\delta = 234.0$ [s, br, 1 C, μ -CO (wegen Umlagerung)]; 217.6 [m, (ABCX-System, $X = {}^{13}C$ -Carbonyl), 2 C, CO]; 215.8 (s, br, 2 C, CO); 142.9 (dd, $J = 126 \text{ Hz}, J = 27 \text{ Hz}, 2 \text{ C}, \text{ C-ipso}, \mu - \text{PPh}_2$; 140.9 (d''t'', J = 69 Hz, J = 25 Hz, 4 C, C-*ipso*, μ -dppa); 133.8 (dd, J = 86 Hz, J = 12 Hz, 4 C, C-o, μ -PPh₂); 131.3 (d''t'', J = 12 Hz, J = 6 Hz, 8 C, C-o, μ -dppa); 130.8 (s, 4 C, C-p, μ -dppa); 129.6 [d, J = 23 Hz, 2 C, C-p, μ -PPh₂]; 129.2 ("t", J = 6 Hz, 8 C, C-m, μ -dppa); 128.5 (dd, J = 12 Hz, J = 8 Hz, 4 C, C-m, μ -PPh₂); 68.7 (s, 2 C, CH₂OCH₂, THF); 26.3 (s, 2 C, CH₂CH₂, THF). IR (KBr): vgl. auch Tabelle 1; 1456 ss [δ_{as} (CH₂), THF]; 1365 ss [$\delta_{c}(CH_{2})$, THF]; 1301 s; 1271 s [$\delta(NH)$]; 1127 s(br) $[\gamma(CH_2)]$; 1050 m $[\nu(COC), THF]$; 907 m-st, 890 Sch $[\nu(NP_2)/\gamma(HNP_2)]$; 787 m, $[\nu(NP_2)]$; 456 s, 443 s-m, 431 s-m, 405 s [ν (FeC)]; 379 s, 357 s $[\delta(NP_{2})]$ cm⁻¹.

3.8. Synthese von 15 · CHCl₃ und 15c

Eine Lösung von 1.5 g (1.68 mmol) $15 \cdot \text{THF}$ in 70 ml CHCl₃ wird vorsichtig mit 150 ml n-Pentan überschichtet. Nach 4 bis 10 d bilden sich tiefdunkelrote Kristallnadeln der Verbindung **15c** und orangerote Prismen von $15 \cdot \text{CHCl}_3$, welche mechanisch voneinander getrennt werden können. Die Kristalle von $15 \cdot \text{CHCl}_3$ geben in trockener Atmosphäre leicht ihr Kristallsolvens ab und färben sich an der Oberfläche dunkel.

3.8.1. μ -Diphenylphosphido- μ -bis(diphenylphosphino)amin-P-[dicarbonyl-hydrido-eisen(1)],P'-[tricarbonyleisen(1)] (Fe-Fe)-Trichlormethan (1 / 1) (15 · CHCl₃)

Ausbeute: 0.11 g (0.12 mmol), 7%. Schm.-Ber. (Zers.) > 160–171 °C. Gef: C, 55.79; H, 3.80; N 1.55. $C_{42}H_{33}Cl_3Fe_2NO_5P_3$ (942.70) ber.: C, 53.51; H, 3.53; N 1.49%. IR (KBr, Einkristall): vgl. auch Tabelle 1; 1260 s-m [δ (NH)]; 1217 s [δ (CH)_{CHCl_3}]; 1095 m [P–Ph sens. q], 895 m br [ν (NP₂)/ γ (HNP₂)]; 775 s-m(Sch) [ν (NP₂)] + 759 m [ν (CCl)_{CHCl_3}]cm⁻¹.

3.8.2. μ -Carbonyl- μ -hydrido- μ -diphenylphosphido- μ bis(diphenylphosphino)amin-P,P'-bis[dicarbonyleisen(1)] (Fe-Fe) (**15c**)

Ausbeute: 0.88 g (1.07 mmol), 64%. Schmp. (Zers.) > 188 °C. Gef.: C, 60.33; H, 3.95; N, 1.71. $C_{41}H_{32}Fe_2NO_5P_3$ (823.32) ber.: C, 59.81; H 3.92; N 1.70%. IR (KBr): vgl. auch Tabelle 1; 1095 m-st [P-Ph sens. q]; 885 m, br [$\nu(NP_2)/\gamma(HNP_2)$]; 772 s-m [$\nu(NP_2)$]; 430 s, 393 ss [$\nu(FeC)$]; 358 ss [$\delta(NP_2)$] cm⁻¹.

3.9. μ -Chloro- μ -diphenylphosphido- μ -bis(diphenylphosphino)amin-P,P'-bis[dicarbonyleisen(I)] (Fe-Fe)-Tetrahydrofuran (1 / 1) (16 · C₄H₈O)

In einer Belichtungsapparatur werden 1.53 g (2 mmol) 6 · THF und 0.37 ml (2 mmol) Chlordiphenylphosphin in 350 ml THF gelöst und unter Rühren bei Raumtemp. (und Wasserkühlung) 6h mit UV-Licht (Hanau TQ 150, 25W) bestrahlt, wobei sich die Reaktionslösung geringfügig aufhellt. Danach wird bei Raumtemp. unter vermindertem Druck bis zur Sättigung eingeengt und mit 300 ml n-Pentan versetzt. Der dabei ausfallende, orange-braune Niederschlag wird abfiltriert und im Vakuum getrocknet. Durch Filtrationschromatographie über Florisil (100–200 mesh; THF) kann eine orangefarbene Fraktion eluiert werden, welche wie oben beschrieben zur Sättigung eingeengt und mit 200 ml n-Pentan versetzt wird. Der Komplex 16 · THF fällt dabei als feinverteilter orangeroter, sehr hygroskopischer Niederschlag aus, welcher abfiltriert und im Vakuum getrocknet wird. Ausbeute: 680 mg (0.75 mmol), 38%. Schmp. (Zers.) > 163 °C. Gef.: C, 58.16; H, 4.38; N, 1.04. $C_{44}H_{39}CIFe_2NO_5P_3$ (901.87) ber.: C, 58.60; H, 4.36; N, 1.55%. MS (EI, 70eV, Quellentemp. 150 °C, bez. auf ³⁵Cl): $m/z = 901 [M^+ +$ THF]; 385 [dppa⁺]. MS (FD, THF, bez. auf ³⁵Cl): 829 $[M^+]$. ¹H-NMR [CDCl₃/CD₂Cl₂ (1:1), 22.4°C]: $\delta =$ 8.00-7.20 (m, 30 H, C₆H₅); 4.33 (s, br, 1 H, NH); 3.87 $(m, 4 H, CH_2OCH_2, THF); 1.92 (m, 4 H, CH_2CH_2, m)$ THF). ${}^{31}P{}^{1}H{}^{1}$ -NMR [CDCl₃/CD₂Cl₂ (1:1), 22.0 °C]: δ = 179.5 [t, ²J(³¹P_{FeFe}) = 55 Hz, 1 P, μ-PPh₂ (*cis*-Isomer)]; 170.6 [t, ²J(³¹P_{FeFe}) = 109 Hz, 1 P, μ-PPh₂ (*trans*-Isomer)]; 110.5 [d, ²J(³¹P_{FeFe})] = 55 Hz, 2 P, μ -dppa (*cis*-Isomer)]; 104.5 [d, ${}^{2}J({}^{31}P_{\text{FeFe}}{}^{31}P_{\text{N}}) = 109$ Hz, 2 P, μ -dppa (*trans*-Isomer)]. IR (KBr): 3150 s(br) [ν (NH · · · O)]; 3070 s, 3059 s, $[\nu(CH)arom.]$; 2970 s + 2930 ss Sch, 2880 s $[\nu(CH_2),$ THF]; 2030 s, 2005 s, 1984 m-st, 1974 m-st, 1950 sst, 1918 sst, 1901 m-st, 1882 s-m(Sch) [ν (CO)]; 1460 ss $[\delta_{ns}(CH_2), THF]; 1365 \text{ ss } [\delta_{s}(CH_2), THF]; 1260 \text{ s}$ $[\delta(NH)]$; 1101 m, 1095 m [P-Ph sens. q]; 1052 m $[\nu(COC), THF]; 907 \text{ m} [\nu(NP_2)/\gamma(HNP_2)]; 794 \text{ s-m},$ br [$\nu(NP_{2})$]; 632 s-m [δ (FeCO)]; 621 s [α (CCC)s]; 610 s-m, 602 s-m, 591 m, 568 m [δ(FeCO)]; 538 m $[\delta(\text{FeCO}) \text{ u. } \gamma(\text{HNP}_2)]; 469 \text{ ss}, 447 \text{ s}, 430 \text{ ss}, 403 \text{ s}$ $[\nu(\text{FeC})]$; 380 s, 356 s $[\delta(\text{NP}_2)]$ cm⁻¹.

3.10. Dicarbonyl-bis(diphenylphosphino)amin-nitrosyleisentetrafluoroborat (17)

Eine Lösung von 1.53 g (2 mmol) $6 \cdot$ THF in 30 ml CH₂Cl₂ wird mit einer Lösung von 245 mg (2.1 mmol) Nitrosyltetrafluoroborat in 30 ml CH₂Cl₂ vereinigt und bei Raumtemp. gerührt. Die dabei auftretende, zunächst sehr heftige Gasentwicklung klingt nach etwa 2–4h ab;

die Lösung nimmt über diesen Zeitraum eine tiefdunkelrote Farbe an. Anschließend engt man bei Raumtemp. unter vermindertem Druck bis zur Sättigung der Lösung ein und versetzt mit 50 ml n-Pentan. Der dabei anfallende orange-braune Feststoff wird abfiltriert und erneut in 25 ml CH₂Cl₂ gelöst. Diese Lösung wird vorsichtig mit 100 ml n-Heptan überschichtet. Nach einigen Tagen kristalliseren rotbraune Platten und Quader von 17 aus. Diese dienten auch zur Anfertigung der Röntgenstrukturanlyse. Ausbeute: 1.02 g (1.66 mmol), 83%. Schmp. (Zers.) > 173° C. Gef.: C, 50.74; H, 3.38; N, 4.31. C₂₆H₂₁BF₄FeN₂O₃P₂ (614.06) ber.: C, 50.86; H, 3.45; N, 4.56%. Leitfähigkeit: $\Lambda = 6.2 \ \Omega^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$; $C = 1.4 \times 10^{-3} \ \text{mol}^{1-1}$. MS (FD/CH₂Cl₂, bez. auf ¹¹B und ⁵⁶ Fe): $m/z = 615 [M^+ + H^+ + BF_A^-]; 527 [M^+].$ ¹H-NMR (CD₂Cl₂, 21.0 °C): $\delta = 7.85 - 7.50$ (m, 20 H, C₆H₅); 7.34 (s, br, 1 H, NH). ³¹P{¹H}-NMR (CD₂Cl₂, 22°C): $\delta = 55.5$ (s). ¹³C{¹H}-NMR (CD₂Cl₂, 25.1°C): $\delta = 210.2 (t, {}^{2}J({}^{31}P{}^{13}C) = 4 Hz, 2 C, CO); 133.4 (s, 4)$ C, C-p, C₆H₅); 132.0 ("t", J = 24Hz, 4 C, C-ipso, C_6H_5 ; 131.2 ("t", J = 7 Hz, 8 C, C-o, C_6H_5); 130.0 ("t", J = 8 Hz, 8 C, C-m, C₆H₅). IR (KBr): 3250 s-m(br) $[\nu(NH)_{BHB}]$; 3180 s-m(br) $[\nu(NH)_{LHB}]$; 3060 s, 3030 ss [ν (CH)arom.]; 2059 sst(sf), 2021 sst(sf) $[\nu(CO)];$ 1803 sst $[\nu(NO)];$ 1280 s; 1241 s-m(br) $[\delta(\text{NH})_{\text{BHB}}]; 1225 \text{ s-m(br)} [\delta(\text{NH})_{\text{LHB}}]; 1101 \text{ st } [P-Ph]$ sens. q]; 1086 st $[\nu(BF_4), F_2]$; 905 s-m, 840 m-st(br) $[\nu(NP_2)/\gamma(HNP_2)]$; 634 s-m, 612 m, 591 m, 580 sm(Sch) [δ (FeCO)]; 548 m-st [γ (HNP₃) u. δ (Fe(CO)]; 462 s5, 445 ss, 419 s-m [ν (FeC)] u. ν (FeN)]; 364 s $[\delta(NP_2)]$ cm⁻¹.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie sowie der Hoechst AG, Frankfurt a. M. für die Förderung der vorliegenden Untersuchungen. Herrn Prof. Dr. D. Sellmann gilt unserer besonderer Dank für die großzügige Unterstützung bei der Durchführung der Röntgenstrukturbestimmungen.

Literaturverzeichnis

- J. Ellermann, C. Schelle, F.A. Knoch, M. Moll und D. Pohl, Mh. Chemie 127 (1996) 783.
- [2] R.J. Puddephatt, Chem. Soc. Rev., 12 (1983) 99,
- [3] C.A. Tolman, Chem. Rev., 77 (1977) 313,
- [4] D.F. Clemens und H.H. Sisler, Inorg. Chem., 4 (1965) 1222.
- [5] H. Nöth und L. Meinel, Z. Amorg. Allg. Chem., 349 (1965) 225.
- [6] O. Schmitz-Du Mont, B. Ross und H. Klieber, Angew. Chem., 79 (1967) 869.
- [7] J. Ellermann und W.H. Gruber, Z. Naturforsch., Teil B, 28 (1973) 310.
- [8] Zusammenfassende Literaturübersicht: D. Pohl, J. Ellermann,

F.A. Knoch, M. Moll und W. Bauer, J. Organomet. Chem., 481 (1994) 259.

- [9] D. Pohl, J. Ellermann, F.A. Knoch, M. Moll und W. Bauer, Chem. Ber., 127 (1994) 2167.
- [10] D. Pohl, J. Ellermann, F.A. Knoch und M. Moll, J. Organomet. Chem., 459 (1995) C6.
- [11] M.S. Balakrishna, V.S. Reddy, S.S. Krishnamurthy, J.F. Nixon und J.C.T.R. Burcket St. Laurent, *Coord. Chem. Rev.*, 129 (1994) 1.
- [12] M. Bardají, N.G. Connelly, M.C. Gimeno, J. Jimenéz, P.G. Jones, A. Laguna und M. Laguna, J. Chem. Soc., Dalton Trans., (1994) 1163.
- [13] R. Rossi, L. Marvelli, A. Marchi, L. Magon, V. Bertolasi und V. Ferretti, J. Chem. Soc., Dalton Trans., (1994) 339.
- [14] M. Bardají, M.C. Gimeno, P.G. Jones, A. Laguna und M. Laguna, Organometallics, 13 (1994) 3415.
- [15] M. Witt und H.W. Roesky, Chem. Rev., 94 (1994) 1163.
- [16] J. Ellermann, N. Geheeb, G. Zoubek und G. Thiele, Z. Naturforsch., Teil B, 32 (1977) 1271.
- [17] C. Moreno, M.J. Macazaga und S. Delgado, *Inorg. Chim. Acta*, 182 (1991) 55.
- [18] D. Pohl, J. Ellermann, F.A. Knoch, M. Moll und W. Bauer, Z. Anorg. Allg. Chem., 622 (1996) 283.
- [19] F.A. Cotton und J.M. Troup, J. Am. Chem. Soc., 96 (1974) 3438.
- [20] H. Nöth und E. Fluck, Z. Naturforsch., Teil B, 39 (1984) 744.
- [21] T.R. Prout, T.W. Imiolczyk, F. Bartheleniy, S.M. Young, R.C. Haltiwanger und A.D. Norman, *Inorg. Chem.*, 33 (1994) 1783.
- [22] D.M. Adams, Metal-Ligand and Related Vibrations, Edward Arnold, London, 1967, S. 105.
- [23] J. Ellermann und M. Lietz, Z. Naturforsch., Teil B, 35 (1980) 64.
- [24] H. Günther, NMR-Spektroskopie, 2. verbesserte Aufl., Georg Thieme, Stuttgart, 1983, S. 163 [Abb, 5.17d].
- [25] L. Ernst, ¹³C-NMR Spektroskopie, UTB 1061, Dr. Dietrich Steinkopff-Verlag, Darmstadt, 1980, S. 86.
- [26] J. Ellermann, F.A. Knoch und K.J. Meier, Z. Naturforsch., Teil B, 45 (1990) 1657.
- [27] G.T. Andrews, I.J. Colquhoun und W. McFarlane, *Polyhedron*, 2 (1983) 783.
- [28] P.A. Wegner, L.F. Evans und J. Haddock, *Inorg. Chem.*, 17 (1978) 192.
- [29] M.G. Newton, R.B. King, M. Chang und J. Gimeno, J. Am. Chem. Soc., 99 (1977) 2802.
- [30] R.B. King und J. Gimeno, Inorg. Chem., 17 (1978) 2390.
- [31] A.L. Du Preez, I.L. Marais, R.J. Haines, A. Pidcock und M. Safari, J. Organomet. Chem., 141 (1977) C10.
- [32] A.L. Du Preez, I.L. Marais, R.J. Haines, A. Pidcock und M. Safari, J. Chem. Soc., Dalton Trans., (1981) 1918.
- [33] F.A. Cotton und J.M. Troup, J. Am. Chem. Soc., 96 (1974) 4422.
- [34] F.A. Cotton und J.M. Troup, J. Chem. Soc., Dalton Trans., (1974) 800.
- [35] G. Hogarth und M.H. Lavender, J. Chem. Soc., Datton Trans., (1992) 2759.
- [36] G. Hogarth, J. Organomet. Chem., 407 (1991) 91.
- [37] N.M. Doherty, G. Hogarth, S.A.R. Knox, K.A. Macpherson, F. Melchior, D.A.V. Morton und A.G. Orpen, *Inorg. Chim. Acta*, 198 (1992) 257.
- [38] N.M. Doherty, G. Hogarth, S.A.R. Knox, K.A. Macpherson, F. Melchior und A.G. Orpen J. Chem. Soc., Chem. Commun., (1986) 540.
- [39] P.B. Hitchcock, T.J. Madden und J.F. Nixon, J. Chem. Soc., Chem. Commun., (1989) 1660.
- [40] A.A. Cherkas, S. Doherty, M. Cleroux, G. Hogarth, L.H. Randall, S.M. Breckenridge, N.J. Taylor und A.J. Carty, *Organometallics*, 11 (1992) 1701.

- [41] G. Hogarth, F. Kayser, S.A.R. Knox, D.A.V. Morton, G. Orpen und M.L. Turner, J. Chem. Soc., Chem. Commun., (1988) 358.
- [42] P.B. Hitchcock, T.J. Madden und J.F. Nixon, J. Organomet. Chem., 463 (1993) 155.
- [43] G.M. Dawkins, M. Green, J.C. Jeffery, C. Sambale und F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1983) 499.
- [44] E. Maslowsky, Jr., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, S. 399.
- [45] J. Ellermann, E. Köck, H. Zimmermann und M. Gomm, Acta Crystallogr., C43 (1987) 1795.
- [46] J. Ellermann und W. Wend, Nouv. J. Chim., 10 (1986) 313.
- [47] J. Ellermann und W. Wend, J. Organomet. Chem., 281 (1985) C29.
- [48] D. Seyferth, G.B. Womack, C.M. Archer und J.C. Dewan, Organometallics, 8 (1989) 430.
- [49] D. Seyferth, G.B. Womack, C.M. Archer, J.P. Fackler, Jr. und D.O. Marler, Organometallics, 8 (1989) 443.
- [50] J. Ellermann und N. Ödöl, unveröffentlichte Ergebnisse.
- [51] G. Hogarth und M.H. Lavender, J. Chem. Soc., Dalton Trans., (1993) 143.
- [52] M.R. Adams, J. Gallucci, A. Wojcicki und G.J. Long, *Inorg. Chem.*, 31 (1992) 2.
- [53] Y.-F. Yu, J. Gallucci und A. Wojcicki, J. Chem. Soc., Chem. Commun., (1984) 653 und die dort zit. Lit.
- [54] J. Ellermann, P. Gabold, C. Schelle, F.A. Knoch, M. Moll und W. Bauer, Z. Anorg. Allg. Chem., 621 (1995) 1832.
- [55] G. Hogarth, M.H. Lavender und K. Shukri, Organometallics, 14 (1995) 2325.

- [56] E. Maslowsky, Jr., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, S. 402.
- [57] D.M. Adams, Metal-Ligand and Related Vibrations, Edward Arnold, London, 1967, S. 14.
- [58] F. Vögtle, J. Franke, W. Bunzel, A. Aigner, D. Worsch und K.H. Weißbarth, *Stereochemie in Stereobildern*, VCh-Verlag, Weinheim, 1987, S. 49.
- [59] P.A. Giguère, J. Chem. Phys., 87 (1987) 4835.
- [60] R. Taylor, O. Kennard und W. Versichel, J. Am. Chem. Soc., 106 (1984) 244.
- [61] A. Streitwieser, Jr. und C.H. Heathcock, Organische Chemie, 1. korr. Nachdruck der 1. Auflage, VCH Verlagsgesellschaft mbH, Weinheim, 1986, 117 ff.
- [62] J. Donohue, Selected Topics in H Bonding, in A. Rich und N. Davidson (Hsrg.), *Structural Chemistry and Molecular Biology*, W.H. Freemann, San Fransisco, 1968, 443 ff.
- [63] J. Ellermann und W. Wend, J. Organomet. Chem., 258 (1983) 21.
- [64] J. Ellermann, J. Sutter, C. Schelle, F.A. Knoch und M. Moll, Z. Anorg. Allg. Chem., 619 (1993) 2006.
- [65] D.H. Whiffen, J. Chem. Soc., (1956) 1350.
- [66] SHELXTL-PLUS for Siemens Crystallographic Research Systems, Release 4.11/V, Copyright 1990 by Siemens Analytical X-Ray Instruments Inc., Madison, WI.
- [67] SHELXL93 for Siemens Crystallographic Research Systems, Copyright 1993 by Siemens Analytical X-Ray Instruments Inc., Madison, WI.